Radeon RX 6650M XT vs GeForce RTX 3070 Ti
Aggregate performance score
We've compared GeForce RTX 3070 Ti with Radeon RX 6650M XT, including specs and performance data.
RTX 3070 Ti outperforms RX 6650M XT by a substantial 38% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 32 | 82 |
Place by popularity | 71 | not in top-100 |
Cost-effectiveness evaluation | 52.57 | no data |
Power efficiency | 14.58 | 25.52 |
Architecture | Ampere (2020−2024) | RDNA 2.0 (2020−2024) |
GPU code name | GA104 | Navi 23 |
Market segment | Desktop | Laptop |
Release date | 31 May 2021 (3 years ago) | 4 January 2022 (2 years ago) |
Launch price (MSRP) | $599 | no data |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 6144 | 2048 |
Core clock speed | 1575 MHz | 2068 MHz |
Boost clock speed | 1770 MHz | 2416 MHz |
Number of transistors | 17,400 million | 11,060 million |
Manufacturing process technology | 8 nm | 7 nm |
Power consumption (TDP) | 290 Watt | 120 Watt |
Texture fill rate | 339.8 | 309.2 |
Floating-point processing power | 21.75 TFLOPS | 9.896 TFLOPS |
ROPs | 96 | 64 |
TMUs | 192 | 128 |
Tensor Cores | 192 | no data |
Ray Tracing Cores | 48 | 32 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | no data | large |
Interface | PCIe 4.0 x16 | PCIe 4.0 x8 |
Length | 267 mm | no data |
Width | 2-slot | no data |
Supplementary power connectors | 1x 12-pin | None |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR6X | GDDR6 |
Maximum RAM amount | 8 GB | 8 GB |
Memory bus width | 256 Bit | 128 Bit |
Memory clock speed | 1188 MHz | 2000 MHz |
Memory bandwidth | 608.3 GB/s | 256.0 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | 1x HDMI, 3x DisplayPort | No outputs |
HDMI | + | - |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 Ultimate (12_2) | 12 Ultimate (12_2) |
Shader Model | 6.6 | 6.5 |
OpenGL | 4.6 | 4.6 |
OpenCL | 3.0 | 2.1 |
Vulkan | 1.2 | 1.3 |
CUDA | 8.6 | - |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Passmark
This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 184
+41.5%
| 130−140
−41.5%
|
1440p | 98
+40%
| 70−75
−40%
|
4K | 66
+46.7%
| 45−50
−46.7%
|
Cost per frame, $
1080p | 3.26 | no data |
1440p | 6.11 | no data |
4K | 9.08 | no data |
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 174
+8600%
|
2−3
−8600%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 171
+5600%
|
3−4
−5600%
|
Assassin's Creed Valhalla | 100−110
+44%
|
75−80
−44%
|
Battlefield 5 | 190−200
+39.3%
|
140−150
−39.3%
|
Call of Duty: Modern Warfare | 110−120
+5550%
|
2−3
−5550%
|
Cyberpunk 2077 | 138
+6800%
|
2−3
−6800%
|
Far Cry 5 | 110−120
+40%
|
80−85
−40%
|
Far Cry New Dawn | 140−150
+48%
|
100−105
−48%
|
Forza Horizon 4 | 220−230
+42.5%
|
160−170
−42.5%
|
Hitman 3 | 120−130
+2975%
|
4−5
−2975%
|
Horizon Zero Dawn | 220−230
+2763%
|
8−9
−2763%
|
Metro Exodus | 150−160
+40.9%
|
110−120
−40.9%
|
Red Dead Redemption 2 | 110−120
+46.3%
|
80−85
−46.3%
|
Shadow of the Tomb Raider | 240−250
+6125%
|
4−5
−6125%
|
Watch Dogs: Legion | 140−150
+432%
|
27−30
−432%
|
Full HD
High Preset
Assassin's Creed Odyssey | 120−130
+4133%
|
3−4
−4133%
|
Assassin's Creed Valhalla | 100−110
+44%
|
75−80
−44%
|
Battlefield 5 | 190−200
+39.3%
|
140−150
−39.3%
|
Call of Duty: Modern Warfare | 110−120
+5550%
|
2−3
−5550%
|
Cyberpunk 2077 | 121
+5950%
|
2−3
−5950%
|
Far Cry 5 | 110−120
+40%
|
80−85
−40%
|
Far Cry New Dawn | 140−150
+48%
|
100−105
−48%
|
Forza Horizon 4 | 220−230
+42.5%
|
160−170
−42.5%
|
Hitman 3 | 120−130
+2975%
|
4−5
−2975%
|
Horizon Zero Dawn | 220−230
+2763%
|
8−9
−2763%
|
Metro Exodus | 150−160
+40.9%
|
110−120
−40.9%
|
Red Dead Redemption 2 | 110−120
+46.3%
|
80−85
−46.3%
|
Shadow of the Tomb Raider | 316
+7800%
|
4−5
−7800%
|
The Witcher 3: Wild Hunt | 120−130
+1333%
|
9−10
−1333%
|
Watch Dogs: Legion | 140−150
+432%
|
27−30
−432%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 103
+3333%
|
3−4
−3333%
|
Assassin's Creed Valhalla | 100−110
+44%
|
75−80
−44%
|
Call of Duty: Modern Warfare | 110−120
+5550%
|
2−3
−5550%
|
Cyberpunk 2077 | 111
+5450%
|
2−3
−5450%
|
Far Cry 5 | 110−120
+40%
|
80−85
−40%
|
Forza Horizon 4 | 220−230
+42.5%
|
160−170
−42.5%
|
Hitman 3 | 120−130
+2975%
|
4−5
−2975%
|
Horizon Zero Dawn | 243
+2938%
|
8−9
−2938%
|
Shadow of the Tomb Raider | 274
+6750%
|
4−5
−6750%
|
The Witcher 3: Wild Hunt | 147
+1533%
|
9−10
−1533%
|
Watch Dogs: Legion | 108
+286%
|
27−30
−286%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 110−120
+46.3%
|
80−85
−46.3%
|
1440p
High Preset
Battlefield 5 | 130−140
+43.2%
|
95−100
−43.2%
|
Far Cry New Dawn | 95−100
+47.7%
|
65−70
−47.7%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 93
+43.1%
|
65−70
−43.1%
|
Assassin's Creed Valhalla | 75−80
+50%
|
50−55
−50%
|
Call of Duty: Modern Warfare | 70−75
+44%
|
50−55
−44%
|
Cyberpunk 2077 | 73 | 0−1 |
Far Cry 5 | 70−75
+42%
|
50−55
−42%
|
Forza Horizon 4 | 270−280
+42.6%
|
190−200
−42.6%
|
Hitman 3 | 85−90
+1367%
|
6−7
−1367%
|
Horizon Zero Dawn | 184
+9100%
|
2−3
−9100%
|
Metro Exodus | 135
+42.1%
|
95−100
−42.1%
|
Shadow of the Tomb Raider | 205
+46.4%
|
140−150
−46.4%
|
The Witcher 3: Wild Hunt | 100−110
+40%
|
75−80
−40%
|
Watch Dogs: Legion | 230−240
+45.6%
|
160−170
−45.6%
|
1440p
Epic Preset
Red Dead Redemption 2 | 100−110
+5100%
|
2−3
−5100%
|
4K
High Preset
Battlefield 5 | 70−75
+42%
|
50−55
−42%
|
Far Cry New Dawn | 55−60
+47.5%
|
40−45
−47.5%
|
Hitman 3 | 50−55
+48.6%
|
35−40
−48.6%
|
Horizon Zero Dawn | 220−230
+38.8%
|
160−170
−38.8%
|
Metro Exodus | 90−95
+40%
|
65−70
−40%
|
The Witcher 3: Wild Hunt | 109
+45.3%
|
75−80
−45.3%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 58
+5700%
|
1−2
−5700%
|
Assassin's Creed Valhalla | 45−50 | 0−1 |
Call of Duty: Modern Warfare | 40−45
+46.7%
|
30−33
−46.7%
|
Cyberpunk 2077 | 36
+50%
|
24−27
−50%
|
Far Cry 5 | 40−45
+40%
|
30−33
−40%
|
Forza Horizon 4 | 95−100
+38.6%
|
70−75
−38.6%
|
Shadow of the Tomb Raider | 119
+40%
|
85−90
−40%
|
Watch Dogs: Legion | 46
+53.3%
|
30−33
−53.3%
|
4K
Epic Preset
Red Dead Redemption 2 | 60−65
+3000%
|
2−3
−3000%
|
This is how RTX 3070 Ti and RX 6650M XT compete in popular games:
- RTX 3070 Ti is 42% faster in 1080p
- RTX 3070 Ti is 40% faster in 1440p
- RTX 3070 Ti is 47% faster in 4K
Here's the range of performance differences observed across popular games:
- in Horizon Zero Dawn, with 1440p resolution and the Ultra Preset, the RTX 3070 Ti is 9100% faster.
All in all, in popular games:
- Without exception, RTX 3070 Ti surpassed RX 6650M XT in all 29 of our tests.
Pros & cons summary
Performance score | 61.10 | 44.25 |
Recency | 31 May 2021 | 4 January 2022 |
Chip lithography | 8 nm | 7 nm |
Power consumption (TDP) | 290 Watt | 120 Watt |
RTX 3070 Ti has a 38.1% higher aggregate performance score.
RX 6650M XT, on the other hand, has an age advantage of 7 months, a 14.3% more advanced lithography process, and 141.7% lower power consumption.
The GeForce RTX 3070 Ti is our recommended choice as it beats the Radeon RX 6650M XT in performance tests.
Be aware that GeForce RTX 3070 Ti is a desktop card while Radeon RX 6650M XT is a notebook one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.