GeForce GT 240 vs RTX 3050 4GB Mobile
Aggregate performance score
We've compared GeForce RTX 3050 4GB Mobile with GeForce GT 240, including specs and performance data.
RTX 3050 4GB Mobile outperforms GT 240 by a whopping 1768% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 224 | 1025 |
Place by popularity | 60 | not in top-100 |
Cost-effectiveness evaluation | no data | 0.01 |
Power efficiency | 28.23 | 1.31 |
Architecture | Ampere (2020−2024) | Tesla 2.0 (2007−2013) |
GPU code name | GN20-P0 | GT215 |
Market segment | Laptop | Desktop |
Release date | 11 May 2021 (3 years ago) | 17 November 2009 (15 years ago) |
Launch price (MSRP) | no data | $80 |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 2048 | 96 |
Core clock speed | 1238 MHz | 550 MHz |
Boost clock speed | 1500 MHz | no data |
Number of transistors | no data | 727 million |
Manufacturing process technology | 8 nm | 40 nm |
Power consumption (TDP) | 60 Watt (35 - 80 Watt TGP) | 69 Watt |
Maximum GPU temperature | no data | 105C C |
Texture fill rate | no data | 17.60 |
Floating-point processing power | no data | 0.2573 TFLOPS |
ROPs | no data | 8 |
TMUs | no data | 32 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | large | no data |
Bus support | no data | PCI-E 2.0 |
Interface | no data | PCIe 2.0 x16 |
Length | no data | 168 mm |
Height | no data | 4.376" (111 mm) (11.1 cm) |
Width | no data | 1-slot |
Supplementary power connectors | no data | None |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR6 | GDDR5 |
Maximum RAM amount | 4 GB | 512 MB or 1 GB |
Memory bus width | 128 Bit | 128 Bit |
Memory clock speed | 12000 MHz | 1700 MHz GDDR5, 1000 MHz GDDR3, 900 MHz DDR3 MHz |
Memory bandwidth | no data | 54.4 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | no data | DVIVGAHDMI |
Multi monitor support | no data | + |
HDMI | - | + |
Maximum VGA resolution | no data | 2048x1536 |
Audio input for HDMI | no data | Internal |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12_2 | 11.1 (10_1) |
Shader Model | no data | 4.1 |
OpenGL | no data | 3.2 |
OpenCL | no data | 1.1 |
Vulkan | - | N/A |
CUDA | - | + |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
3DMark Vantage Performance
3DMark Vantage is an outdated DirectX 10 benchmark using 1280x1024 screen resolution. It taxes the graphics card with two scenes, one depicting a girl escaping some militarized base located within a sea cave, the other displaying a space fleet attack on a defenseless planet. It was discontinued in April 2017, and Time Spy benchmark is now recommended to be used instead.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 63
+152%
| 25
−152%
|
1440p | 44
+2100%
| 2−3
−2100%
|
4K | 29
+2800%
| 1−2
−2800%
|
Cost per frame, $
1080p | no data | 3.20 |
1440p | no data | 40.00 |
4K | no data | 80.00 |
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 66
+1550%
|
4−5
−1550%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 55−60
+817%
|
6−7
−817%
|
Assassin's Creed Valhalla | 58
+1833%
|
3−4
−1833%
|
Battlefield 5 | 80−85
+1950%
|
4−5
−1950%
|
Call of Duty: Modern Warfare | 50−55
+1175%
|
4−5
−1175%
|
Cyberpunk 2077 | 52
+1200%
|
4−5
−1200%
|
Far Cry 5 | 55−60
+5600%
|
1−2
−5600%
|
Far Cry New Dawn | 65−70
+2067%
|
3−4
−2067%
|
Forza Horizon 4 | 140−150
+7150%
|
2−3
−7150%
|
Hitman 3 | 57
+850%
|
6−7
−850%
|
Horizon Zero Dawn | 110−120
+721%
|
14−16
−721%
|
Metro Exodus | 126
+2000%
|
6−7
−2000%
|
Red Dead Redemption 2 | 87
+4250%
|
2−3
−4250%
|
Shadow of the Tomb Raider | 80−85
+950%
|
8−9
−950%
|
Watch Dogs: Legion | 186
+464%
|
30−35
−464%
|
Full HD
High Preset
Assassin's Creed Odyssey | 55−60
+817%
|
6−7
−817%
|
Assassin's Creed Valhalla | 32
+3100%
|
1−2
−3100%
|
Battlefield 5 | 80−85
+1950%
|
4−5
−1950%
|
Call of Duty: Modern Warfare | 50−55
+1175%
|
4−5
−1175%
|
Cyberpunk 2077 | 41
+925%
|
4−5
−925%
|
Far Cry 5 | 55−60
+5600%
|
1−2
−5600%
|
Far Cry New Dawn | 65−70
+2067%
|
3−4
−2067%
|
Forza Horizon 4 | 140−150
+7150%
|
2−3
−7150%
|
Hitman 3 | 55
+817%
|
6−7
−817%
|
Horizon Zero Dawn | 110−120
+721%
|
14−16
−721%
|
Metro Exodus | 95
+1800%
|
5−6
−1800%
|
Red Dead Redemption 2 | 63
+3050%
|
2−3
−3050%
|
Shadow of the Tomb Raider | 94
+1075%
|
8−9
−1075%
|
The Witcher 3: Wild Hunt | 50−55
+391%
|
10−12
−391%
|
Watch Dogs: Legion | 180
+445%
|
30−35
−445%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 55−60
+817%
|
6−7
−817%
|
Assassin's Creed Valhalla | 24
+2300%
|
1−2
−2300%
|
Call of Duty: Modern Warfare | 50−55
+1175%
|
4−5
−1175%
|
Cyberpunk 2077 | 34
+750%
|
4−5
−750%
|
Far Cry 5 | 55−60
+5600%
|
1−2
−5600%
|
Forza Horizon 4 | 140−150
+7150%
|
2−3
−7150%
|
Hitman 3 | 51
+750%
|
6−7
−750%
|
Horizon Zero Dawn | 74
+429%
|
14−16
−429%
|
Shadow of the Tomb Raider | 81
+913%
|
8−9
−913%
|
The Witcher 3: Wild Hunt | 46
+318%
|
10−12
−318%
|
Watch Dogs: Legion | 26
−26.9%
|
30−35
+26.9%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 72
+3500%
|
2−3
−3500%
|
1440p
High Preset
Battlefield 5 | 45−50
+4600%
|
1−2
−4600%
|
Far Cry New Dawn | 35−40
+1800%
|
2−3
−1800%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 24−27
+2500%
|
1−2
−2500%
|
Assassin's Creed Valhalla | 22
+2100%
|
1−2
−2100%
|
Call of Duty: Modern Warfare | 27−30 | 0−1 |
Cyberpunk 2077 | 18
+1700%
|
1−2
−1700%
|
Far Cry 5 | 27−30
+2800%
|
1−2
−2800%
|
Forza Horizon 4 | 140−150
+1943%
|
7−8
−1943%
|
Hitman 3 | 37
+429%
|
7−8
−429%
|
Horizon Zero Dawn | 59
+1080%
|
5−6
−1080%
|
Metro Exodus | 52
+2500%
|
2−3
−2500%
|
Shadow of the Tomb Raider | 56
+2700%
|
2−3
−2700%
|
The Witcher 3: Wild Hunt | 30−35
+3000%
|
1−2
−3000%
|
Watch Dogs: Legion | 166
+2667%
|
6−7
−2667%
|
1440p
Epic Preset
Red Dead Redemption 2 | 53
+1225%
|
4−5
−1225%
|
4K
High Preset
Battlefield 5 | 24−27
+2400%
|
1−2
−2400%
|
Far Cry New Dawn | 18−20 | 0−1 |
Hitman 3 | 15 | 0−1 |
Horizon Zero Dawn | 120−130
+2033%
|
6−7
−2033%
|
Metro Exodus | 37
+3600%
|
1−2
−3600%
|
The Witcher 3: Wild Hunt | 29
+2800%
|
1−2
−2800%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 14−16
+1400%
|
1−2
−1400%
|
Assassin's Creed Valhalla | 12−14
+1200%
|
1−2
−1200%
|
Call of Duty: Modern Warfare | 14−16 | 0−1 |
Cyberpunk 2077 | 6 | 0−1 |
Far Cry 5 | 14−16 | 0−1 |
Forza Horizon 4 | 30−35
+3300%
|
1−2
−3300%
|
Shadow of the Tomb Raider | 34
+3300%
|
1−2
−3300%
|
Watch Dogs: Legion | 10−12 | 0−1 |
4K
Epic Preset
Red Dead Redemption 2 | 25
+733%
|
3−4
−733%
|
This is how RTX 3050 4GB Mobile and GT 240 compete in popular games:
- RTX 3050 4GB Mobile is 152% faster in 1080p
- RTX 3050 4GB Mobile is 2100% faster in 1440p
- RTX 3050 4GB Mobile is 2800% faster in 4K
Here's the range of performance differences observed across popular games:
- in Forza Horizon 4, with 1080p resolution and the Medium Preset, the RTX 3050 4GB Mobile is 7150% faster.
- in Watch Dogs: Legion, with 1080p resolution and the Ultra Preset, the GT 240 is 27% faster.
All in all, in popular games:
- RTX 3050 4GB Mobile is ahead in 47 tests (98%)
- GT 240 is ahead in 1 test (2%)
Pros & cons summary
Performance score | 24.47 | 1.31 |
Recency | 11 May 2021 | 17 November 2009 |
Maximum RAM amount | 4 GB | 512 MB or 1 GB |
Chip lithography | 8 nm | 40 nm |
Power consumption (TDP) | 60 Watt | 69 Watt |
RTX 3050 4GB Mobile has a 1767.9% higher aggregate performance score, an age advantage of 11 years, a 400% more advanced lithography process, and 15% lower power consumption.
GT 240, on the other hand, has a 12700% higher maximum VRAM amount.
The GeForce RTX 3050 4GB Mobile is our recommended choice as it beats the GeForce GT 240 in performance tests.
Be aware that GeForce RTX 3050 4GB Mobile is a notebook card while GeForce GT 240 is a desktop one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.