Tesla K20c vs GeForce GTX 780
Aggregate performance score
We've compared GeForce GTX 780 with Tesla K20c, including specs and performance data.
GTX 780 outperforms Tesla K20c by a whopping 133% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 262 | 486 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 4.75 | 0.35 |
Power efficiency | 5.74 | 2.73 |
Architecture | Kepler (2012−2018) | Kepler (2012−2018) |
GPU code name | GK110 | GK110 |
Market segment | Desktop | Workstation |
Release date | 23 May 2013 (11 years ago) | 12 November 2012 (12 years ago) |
Launch price (MSRP) | $649 | $3,199 |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
GTX 780 has 1257% better value for money than Tesla K20c.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 2304 | 2496 |
Core clock speed | 863 MHz | 706 MHz |
Boost clock speed | 900 MHz | no data |
Number of transistors | 7,080 million | 7,080 million |
Manufacturing process technology | 28 nm | 28 nm |
Power consumption (TDP) | 250 Watt | 225 Watt |
Maximum GPU temperature | 95 °C | no data |
Texture fill rate | 173.2 | 146.8 |
Floating-point processing power | 4.156 TFLOPS | 3.524 TFLOPS |
ROPs | 48 | 40 |
TMUs | 192 | 208 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Bus support | PCI Express 3.0 | no data |
Interface | PCIe 3.0 x16 | PCIe 2.0 x16 |
Length | 267 mm | 267 mm |
Height | 4.376" (11.1 cm) | no data |
Width | 2-slot | 2-slot |
Minimum recommended system power | 600 Watt | no data |
Supplementary power connectors | 1x 6-pin + 1x 8-pin | 1x 6-pin + 1x 8-pin |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR5 | GDDR5 |
Maximum RAM amount | 3 GB | 5 GB |
Memory bus width | 384 Bit | 320 Bit |
Memory clock speed | 1502 MHz | 1300 MHz |
Memory bandwidth | 288.4 GB/s | 208.0 GB/s |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | One Dual Link DVI-I, One Dual Link DVI-D, One HDMI, One DisplayPort | No outputs |
Multi monitor support | 4 displays | no data |
HDMI | + | - |
HDCP | + | - |
Maximum VGA resolution | 2048x1536 | no data |
Audio input for HDMI | Internal | no data |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
Blu Ray 3D | + | - |
3D Gaming | + | - |
3D Vision | + | - |
PhysX | + | - |
3D Vision Live | + | - |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 (11_0) | 12 (11_0) |
Shader Model | 5.1 | 5.1 |
OpenGL | 4.3 | 4.6 |
OpenCL | 1.2 | 1.2 |
Vulkan | 1.1.126 | 1.1.126 |
CUDA | + | 3.5 |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Octane Render OctaneBench
This is a special benchmark measuring graphics card performance in OctaneRender, which is a realistic GPU rendering engine by OTOY Inc., available either as a standalone program, or as a plugin for 3DS Max, Cinema 4D and many other apps. It renders four different static scenes, then compares render times with a reference GPU which is currently GeForce GTX 980. This benchmark has nothing to do with gaming and is aimed at professional 3D graphics artists.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 54
+157%
| 21−24
−157%
|
Cost per frame, $
1080p | 12.02 | 152.33 |
Pros & cons summary
Performance score | 20.75 | 8.90 |
Recency | 23 May 2013 | 12 November 2012 |
Maximum RAM amount | 3 GB | 5 GB |
Power consumption (TDP) | 250 Watt | 225 Watt |
GTX 780 has a 133.1% higher aggregate performance score, and an age advantage of 6 months.
Tesla K20c, on the other hand, has a 66.7% higher maximum VRAM amount, and 11.1% lower power consumption.
The GeForce GTX 780 is our recommended choice as it beats the Tesla K20c in performance tests.
Be aware that GeForce GTX 780 is a desktop card while Tesla K20c is a workstation one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.