Radeon RX Vega 64 Nano vs GeForce GT 630 Rev. 2

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot ratednot rated
Place by popularitynot in top-100not in top-100
ArchitectureKepler 2.0 (2013−2015)GCN 5.0 (2017−2020)
GPU code nameGK208Vega 10
Market segmentDesktopDesktop
Release date29 May 2013 (11 years ago)1 October 2017 (7 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores3844096
Core clock speed902 MHz1156 MHz
Boost clock speedno data1247 MHz
Number of transistors915 million12,500 million
Manufacturing process technology28 nm14 nm
Power consumption (TDP)25 Watt250 Watt
Texture fill rate28.86319.2
Floating-point processing power0.6927 TFLOPSno data
ROPs864
TMUs32256

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfacePCIe 2.0 x8PCIe 3.0 x16
Length145 mm152 mm
Width1-slot2-slot
Supplementary power connectorsNone2x 8-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeDDR3HBM2
Maximum RAM amount2 GB8 GB
Memory bus width64 Bit2048 Bit
Memory clock speed900 MHz1600 MHz
Memory bandwidth14.4 GB/s409.6 GB/s

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors1x DVI, 1x HDMI, 1x VGA1x HDMI, 3x DisplayPort
HDMI++

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (11_0)12.0
Shader Model5.15.0
OpenGL4.64.6
OpenCL1.22.0
Vulkan1.1.126-
CUDA3.5-

Pros & cons summary


Recency 29 May 2013 1 October 2017
Maximum RAM amount 2 GB 8 GB
Chip lithography 28 nm 14 nm
Power consumption (TDP) 25 Watt 250 Watt

GT 630 Rev. 2 has 900% lower power consumption.

RX Vega 64 Nano, on the other hand, has an age advantage of 4 years, a 300% higher maximum VRAM amount, and a 100% more advanced lithography process.

We couldn't decide between GeForce GT 630 Rev. 2 and Radeon RX Vega 64 Nano. We've got no test results to judge.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA GeForce GT 630 Rev. 2
GeForce GT 630 Rev. 2
AMD Radeon RX Vega 64 Nano
Radeon RX Vega 64 Nano

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.3 64 votes

Rate GeForce GT 630 Rev. 2 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.8 4 votes

Rate Radeon RX Vega 64 Nano on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.