Ryzen 7 3800XT vs Ryzen 5 1600

Aggregate performance score

Ryzen 5 1600
2017
6 cores / 12 threads, 65 Watt
8.02
Ryzen 7 3800XT
2020
8 cores / 16 threads, 105 Watt
15.42
+92.3%

Ryzen 7 3800XT outperforms Ryzen 5 1600 by an impressive 92% based on our aggregate benchmark results.

Primary details

Comparing Ryzen 5 1600 and Ryzen 7 3800XT processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking946471
Place by popularity44not in top-100
Cost-effectiveness evaluation4.4919.98
Market segmentDesktop processorDesktop processor
SeriesAMD Ryzen 5AMD Ryzen 7
Power efficiency11.2513.39
Architecture codenameZen 2 (2017−2020)Matisse (Zen 2) (2019−2020)
Release date16 March 2017 (7 years ago)16 June 2020 (4 years ago)
Launch price (MSRP)$219$399

Cost-effectiveness evaluation

Performance per price, higher is better.

Ryzen 7 3800XT has 345% better value for money than Ryzen 5 1600.

Detailed specifications

Ryzen 5 1600 and Ryzen 7 3800XT basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores6 (Hexa-Core)8 (Octa-Core)
Threads1216
Base clock speed3.2 GHz3.8 GHz
Boost clock speed3.2 GHz4.7 GHz
Bus rate4 × 8 GT/sno data
Multiplier32no data
L1 cache576 KB512 KB
L2 cache3 MB4 MB
L3 cache16 MB (shared)32 MB
Chip lithography14 nm7 nm, 12 nm
Die size213 mm274 mm2
Maximum core temperatureno data95 °C
Maximum case temperature (TCase)no data95 °C
Number of transistors4800 Million3,800 million
64 bit support++
Windows 11 compatibility-+
Unlocked multiplier++

Compatibility

Information on Ryzen 5 1600 and Ryzen 7 3800XT compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration1 (Uniprocessor)1
SocketAM4AM4
Power consumption (TDP)65 Watt105 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Ryzen 5 1600 and Ryzen 7 3800XT. You'll probably need this information if you require some particular technology.

Instruction set extensionsXFR, FMA3, SSE 4.2, AVX2, SMTMMX, SSE, SSE2, SSE3, SSSE3, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, BMI2, ABM, FMA, ADX, SMEP, SMAP, SMT, CPB, AES-NI, RDRAND, RDSEED, SHA, SME
AES-NI++
FMA-+
AVX++
Precision Boost 2no data+

Virtualization technologies

Virtual machine speed-up technologies supported by Ryzen 5 1600 and Ryzen 7 3800XT are enumerated here.

AMD-V++

Memory specs

Types, maximum amount and channel quantity of RAM supported by Ryzen 5 1600 and Ryzen 7 3800XT. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR4DDR4
Maximum memory size64 GB128 GB
Max memory channels22
Maximum memory bandwidth42.671 GB/s51.196 GB/s
ECC memory support+-

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card--

Peripherals

Specifications and connection of peripherals supported by Ryzen 5 1600 and Ryzen 7 3800XT.

PCIe version3.04.0
PCI Express lanes20no data

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Ryzen 5 1600 8.02
Ryzen 7 3800XT 15.42
+92.3%

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Ryzen 5 1600 12279
Ryzen 7 3800XT 23603
+92.2%

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

Ryzen 5 1600 1083
Ryzen 7 3800XT 1772
+63.6%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

Ryzen 5 1600 4634
Ryzen 7 3800XT 8574
+85%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

Ryzen 5 1600 4538
Ryzen 7 3800XT 6035
+33%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

Ryzen 5 1600 25970
Ryzen 7 3800XT 40528
+56.1%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

Ryzen 5 1600 6.85
Ryzen 7 3800XT 3.74
+83.2%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Ryzen 5 1600 13
Ryzen 7 3800XT 24
+92.4%

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

Ryzen 5 1600 1129
Ryzen 7 3800XT 2230
+97.5%

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

Ryzen 5 1600 147
Ryzen 7 3800XT 219
+49%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Ryzen 5 1600 1.65
Ryzen 7 3800XT 2.36
+43%

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

Ryzen 5 1600 6.4
Ryzen 7 3800XT 11.4
+78.1%

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

Ryzen 5 1600 69
Ryzen 7 3800XT 119
+73.2%

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

Ryzen 5 1600 177
Ryzen 7 3800XT 271
+53.1%

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

Ryzen 5 1600 3430
Ryzen 7 3800XT 7467
+118%

Geekbench 5.5 Multi-Core

Ryzen 5 1600 5425
Ryzen 7 3800XT 8948
+65%

Blender(-)

Ryzen 5 1600 404
+81.5%
Ryzen 7 3800XT 223

Geekbench 5.5 Single-Core

Ryzen 5 1600 950
Ryzen 7 3800XT 1353
+42.4%

7-Zip Single

Ryzen 5 1600 3834
Ryzen 7 3800XT 5516
+43.9%

7-Zip

Ryzen 5 1600 30144
Ryzen 7 3800XT 59247
+96.5%

WebXPRT 3

Ryzen 5 1600 180
Ryzen 7 3800XT 249
+38.3%

Gaming performance

Pros & cons summary


Performance score 8.02 15.42
Recency 16 March 2017 16 June 2020
Physical cores 6 8
Threads 12 16
Chip lithography 14 nm 7 nm
Power consumption (TDP) 65 Watt 105 Watt

Ryzen 5 1600 has 61.5% lower power consumption.

Ryzen 7 3800XT, on the other hand, has a 92.3% higher aggregate performance score, an age advantage of 3 years, 33.3% more physical cores and 33.3% more threads, and a 100% more advanced lithography process.

The Ryzen 7 3800XT is our recommended choice as it beats the Ryzen 5 1600 in performance tests.


Should you still have questions on choice between Ryzen 5 1600 and Ryzen 7 3800XT, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD Ryzen 5 1600
Ryzen 5 1600
AMD Ryzen 7 3800XT
Ryzen 7 3800XT

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


4.1 5732 votes

Rate Ryzen 5 1600 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.3 306 votes

Rate Ryzen 7 3800XT on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Ryzen 5 1600 or Ryzen 7 3800XT, agree or disagree with our judgements, or report an error or mismatch.