GeForce 9200M GS vs Radeon RX Vega 6 (Ryzen 4000/5000)

#ad 
Buy on Amazon
VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking580not rated
Place by popularitynot in top-100not in top-100
Power efficiency29.05no data
ArchitectureVega (2017−2020)Tesla (2006−2010)
GPU code nameVega RenoirG98
Market segmentLaptopLaptop
Release date7 January 2020 (4 years ago)3 June 2008 (16 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores3848
Core clock speed400 MHz550 MHz
Boost clock speed1500 MHzno data
Number of transistorsno data210 million
Manufacturing process technology7 nm65 nm
Power consumption (TDP)15 Watt13 Watt
Texture fill rateno data4.400
Floating-point processing powerno data0.0224 TFLOPS
Gigaflopsno data31
ROPsno data4
TMUsno data8

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Interfaceno dataPCIe 2.0 x16

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeno dataGDDR3
Maximum RAM amountno data256 MB
Memory bus widthno data64 Bit
Memory clock speedno data700 MHz
Memory bandwidthno data11.2 GB/s
Shared memory+-

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectorsno dataNo outputs

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12_111.1 (10_0)
Shader Modelno data4.0
OpenGLno data3.3
OpenCLno data1.1
Vulkan-N/A
CUDA-+

Pros & cons summary


Recency 7 January 2020 3 June 2008
Chip lithography 7 nm 65 nm
Power consumption (TDP) 15 Watt 13 Watt

RX Vega 6 (Ryzen 4000/5000) has an age advantage of 11 years, and a 828.6% more advanced lithography process.

9200M GS, on the other hand, has 15.4% lower power consumption.

We couldn't decide between Radeon RX Vega 6 (Ryzen 4000/5000) and GeForce 9200M GS. We've got no test results to judge.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon RX Vega 6 (Ryzen 4000/5000)
Radeon RX Vega 6 (Ryzen 4000/5000)
NVIDIA GeForce 9200M GS
GeForce 9200M GS

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


4 674 votes

Rate Radeon RX Vega 6 (Ryzen 4000/5000) on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.9 27 votes

Rate GeForce 9200M GS on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.