GeForce GT 520 PCI vs Radeon RX Vega 6 (Ryzen 2000/3000)

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking772not rated
Place by popularitynot in top-100not in top-100
Power efficiency14.00no data
ArchitectureVega (2017−2020)Fermi 2.0 (2010−2014)
GPU code nameVega Raven RidgeGF119
Market segmentLaptopDesktop
Release date7 January 2018 (7 years ago)13 April 2011 (13 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores38448
Core clock speed300 MHz810 MHz
Boost clock speed1100 MHzno data
Number of transistors9,800 million292 million
Manufacturing process technology14 nm40 nm
Power consumption (TDP)15 Watt29 Watt
Texture fill rate40.806.480
Floating-point processing power1.306 TFLOPS0.1555 TFLOPS
ROPs84
TMUs248

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfaceIGPPCI
Lengthno data168 mm
Widthno data1-slot
Supplementary power connectorsNoneNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeSystem SharedDDR3
Maximum RAM amountSystem Shared1 GB
Memory bus widthSystem Shared64 Bit
Memory clock speedSystem Shared900 MHz
Memory bandwidthno data14.4 GB/s
Shared memory-no data

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputs1x DVI, 1x HDMI, 1x VGA
HDMI-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_1)12 (11_0)
Shader Model6.45.1
OpenGL4.64.6
OpenCL2.11.1
Vulkan1.2N/A
CUDA-2.1

Pros & cons summary


Recency 7 January 2018 13 April 2011
Chip lithography 14 nm 40 nm
Power consumption (TDP) 15 Watt 29 Watt

RX Vega 6 (Ryzen 2000/3000) has an age advantage of 6 years, a 185.7% more advanced lithography process, and 93.3% lower power consumption.

We couldn't decide between Radeon RX Vega 6 (Ryzen 2000/3000) and GeForce GT 520 PCI. We've got no test results to judge.

Be aware that Radeon RX Vega 6 (Ryzen 2000/3000) is a notebook card while GeForce GT 520 PCI is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon RX Vega 6 (Ryzen 2000/3000)
Radeon RX Vega 6 (Ryzen 2000/3000)
NVIDIA GeForce GT 520 PCI
GeForce GT 520 PCI

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.6 71 vote

Rate Radeon RX Vega 6 (Ryzen 2000/3000) on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.9 12 votes

Rate GeForce GT 520 PCI on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.