GeForce GTX 1650 TU106 vs Radeon RX Vega 3

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking783not rated
Place by popularity85not in top-100
Power efficiency13.72no data
ArchitectureGCN 5.0 (2017−2020)Turing (2018−2022)
GPU code namePicassoTU106
Market segmentLaptopDesktop
Release date6 January 2019 (6 years ago)18 June 2020 (4 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores192896
Core clock speed300 MHz1410 MHz
Boost clock speed1001 MHz1590 MHz
Number of transistors4,940 million10,800 million
Manufacturing process technology14 nm12 nm
Power consumption (TDP)15 Watt90 Watt
Texture fill rate12.0189.04
Floating-point processing power0.3844 TFLOPS2.849 TFLOPS
ROPs432
TMUs1256
Tensor Coresno data112
Ray Tracing Coresno data14

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfaceIGPPCIe 3.0 x16
Lengthno data229 mm
Widthno data2-slot
Supplementary power connectorsNone1x 6-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeSystem SharedGDDR6
Maximum RAM amountSystem Shared4 GB
Memory bus widthSystem Shared128 Bit
Memory clock speedSystem Shared1500 MHz
Memory bandwidthno data192.0 GB/s
Shared memory+-

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputs1x DVI, 1x HDMI, 1x DisplayPort
HDMI-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_1)12 Ultimate (12_2)
Shader Model6.46.5
OpenGL4.64.6
OpenCL2.01.2
Vulkan1.2.1311.2
CUDA-7.5

Pros & cons summary


Recency 6 January 2019 18 June 2020
Chip lithography 14 nm 12 nm
Power consumption (TDP) 15 Watt 90 Watt

RX Vega 3 has 500% lower power consumption.

GTX 1650 TU106, on the other hand, has an age advantage of 1 year, and a 16.7% more advanced lithography process.

We couldn't decide between Radeon RX Vega 3 and GeForce GTX 1650 TU106. We've got no test results to judge.

Be aware that Radeon RX Vega 3 is a notebook card while GeForce GTX 1650 TU106 is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon RX Vega 3
Radeon RX Vega 3
NVIDIA GeForce GTX 1650 TU106
GeForce GTX 1650 TU106

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.5 2026 votes

Rate Radeon RX Vega 3 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.6 279 votes

Rate GeForce GTX 1650 TU106 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.