Quadro P3200 Max-Q vs Radeon RX Vega 24 Mobile

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot rated238
Place by popularitynot in top-100not in top-100
Power efficiencyno data21.79
ArchitectureGCN 5.0 (2017−2020)Pascal (2016−2021)
GPU code nameFenghuangGP104
Market segmentLaptopMobile workstation
Release dateno data21 February 2018 (6 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA coresno data1792
Core clock speed300 MHz1139 MHz
Boost clock speed1190 MHz1404 MHz
Number of transistorsno data7,200 million
Manufacturing process technology14 nm16 nm
Power consumption (TDP)100 Watt75 Watt
Texture fill rateno data157.2
Floating-point processing powerno data5.032 TFLOPS
ROPsno data64
TMUsno data112

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfaceIGPMXM-B (3.0)
Supplementary power connectorsno dataNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeno dataGDDR5
Maximum RAM amountno data6 GB
Memory bus widthno data192 Bit
Memory clock speed2400 MHz1753 MHz
Memory bandwidthno data168.3 GB/s

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputsNo outputs

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12.0 (12_1)12 (12_1)
Shader Modelno data6.4
OpenGL4.64.6
OpenCLno data1.2
Vulkan-1.2.131
CUDA-6.1

Pros & cons summary


Chip lithography 14 nm 16 nm
Power consumption (TDP) 100 Watt 75 Watt

RX Vega 24 Mobile has a 14.3% more advanced lithography process.

P3200 Max-Q, on the other hand, has 33.3% lower power consumption.

We couldn't decide between Radeon RX Vega 24 Mobile and Quadro P3200 Max-Q. We've got no test results to judge.

Be aware that Radeon RX Vega 24 Mobile is a notebook graphics card while Quadro P3200 Max-Q is a mobile workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon RX Vega 24 Mobile
Radeon RX Vega 24 Mobile
NVIDIA Quadro P3200 Max-Q
Quadro P3200 Max-Q

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


No user ratings yet.

Rate Radeon RX Vega 24 Mobile on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.7 21 vote

Rate Quadro P3200 Max-Q on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.