GeForce MX230 vs Radeon RX Vega 20

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot rated643
Place by popularitynot in top-100not in top-100
Power efficiencyno data33.12
Architectureno dataPascal (2016−2021)
GPU code nameno dataGP108
Market segmentDesktopLaptop
Release dateno data (2024 years ago)21 February 2019 (5 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA coresno data256
Core clock speedno data1519 MHz
Boost clock speedno data1582 MHz
Number of transistorsno data1,800 million
Manufacturing process technologyno data14 nm
Power consumption (TDP)no data10 Watt
Texture fill rateno data25.31
Floating-point processing powerno data0.81 TFLOPS
ROPsno data16
TMUsno data16

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizeno datamedium sized
Interfaceno dataPCIe 3.0 x16
Supplementary power connectorsno dataNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeno dataGDDR5
Maximum RAM amountno data2 GB
Memory bus widthno data64 Bit
Memory clock speedno data1502 MHz
Memory bandwidthno data48.06 GB/s
Shared memoryno data-

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectorsno dataNo outputs

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

Optimus-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectXno data12 (12_1)
Shader Modelno data6.4
OpenGLno data4.6
OpenCLno data1.2
Vulkan-1.2.131
CUDA-+

Pros & cons summary


We couldn't decide between Radeon RX Vega 20 and GeForce MX230. We've got no test results to judge.

Be aware that Radeon RX Vega 20 is a desktop card while GeForce MX230 is a notebook one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon RX Vega 20
Radeon RX Vega 20
NVIDIA GeForce MX230
GeForce MX230

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


1 1 vote

Rate Radeon RX Vega 20 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.4 1375 votes

Rate GeForce MX230 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.