GeForce GTX 560 OEM vs Radeon RX Vega 10

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking682not rated
Place by popularitynot in top-100not in top-100
Power efficiency29.08no data
ArchitectureGCN 5.0 (2017−2020)Fermi 2.0 (2010−2014)
GPU code nameRavenGF110
Market segmentLaptopDesktop
Release date8 January 2019 (5 years ago)29 November 2011 (13 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores640384
Core clock speed300 MHz552 MHz
Boost clock speed1301 MHzno data
Number of transistors4,940 million3,000 million
Manufacturing process technology14 nm40 nm
Power consumption (TDP)10 Watt150 Watt
Texture fill rate52.0424.29
Floating-point processing power1.665 TFLOPS0.8479 TFLOPS
ROPs840
TMUs4044

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfaceIGPPCIe 2.0 x16
Lengthno data229 mm
Widthno data2-slot
Supplementary power connectorsNone1x 6-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeSystem SharedGDDR5
Maximum RAM amountSystem Shared1280 MB
Memory bus widthSystem Shared320 Bit
Memory clock speedSystem Shared802 MHz
Memory bandwidthno data128.3 GB/s
Shared memory+-

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputs2x DVI, 1x HDMI, 1x DisplayPort
HDMI-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_1)12 (11_0)
Shader Model6.45.1
OpenGL4.64.6
OpenCL2.01.1
Vulkan1.2.131N/A
CUDA-2.0

Pros & cons summary


Recency 8 January 2019 29 November 2011
Chip lithography 14 nm 40 nm
Power consumption (TDP) 10 Watt 150 Watt

RX Vega 10 has an age advantage of 7 years, a 185.7% more advanced lithography process, and 1400% lower power consumption.

We couldn't decide between Radeon RX Vega 10 and GeForce GTX 560 OEM. We've got no test results to judge.

Be aware that Radeon RX Vega 10 is a notebook card while GeForce GTX 560 OEM is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon RX Vega 10
Radeon RX Vega 10
NVIDIA GeForce GTX 560 OEM
GeForce GTX 560 OEM

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.4 1073 votes

Rate Radeon RX Vega 10 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3 2 votes

Rate GeForce GTX 560 OEM on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.