GeForce GTX 560M SLI vs Radeon RX 460
Aggregate performance score
We've compared Radeon RX 460 with GeForce GTX 560M SLI, including specs and performance data.
RX 460 outperforms GTX 560M SLI by an impressive 64% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 432 | 571 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 1.12 | no data |
Power efficiency | 9.88 | 4.52 |
Architecture | GCN 4.0 (2016−2020) | Fermi (2010−2014) |
GPU code name | Baffin | N12E-GS |
Market segment | Desktop | Laptop |
Release date | 8 August 2016 (8 years ago) | 6 January 2011 (13 years ago) |
Launch price (MSRP) | $86 | no data |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 896 | 384 |
Core clock speed | 1090 MHz | 775 MHz |
Boost clock speed | 1200 MHz | no data |
Number of transistors | 3,000 million | no data |
Manufacturing process technology | 14 nm | 40 nm |
Power consumption (TDP) | 75 Watt | 100 Watt |
Texture fill rate | 67.20 | no data |
Floating-point processing power | 2.15 TFLOPS | no data |
ROPs | 16 | no data |
TMUs | 56 | no data |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | no data | large |
Interface | PCIe 3.0 x8 | no data |
Length | 170 mm | no data |
Width | 2-slot | no data |
Supplementary power connectors | None | no data |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR5 | GDDR5 |
Maximum RAM amount | 2 GB | no data |
Memory bus width | 128 Bit | 192 Bit |
Memory clock speed | 1750 MHz | 1250 MHz |
Memory bandwidth | 112.0 GB/s | no data |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | 1x DVI, 1x HDMI, 1x DisplayPort | no data |
HDMI | + | - |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
FreeSync | + | - |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 (12_0) | 11 |
Shader Model | 6.4 | no data |
OpenGL | 4.6 | no data |
OpenCL | 2.0 | no data |
Vulkan | 1.2.131 | - |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
3DMark 11 Performance GPU
3DMark 11 is an obsolete DirectX 11 benchmark by Futuremark. It used four tests based on two scenes, one being few submarines exploring the submerged wreck of a sunken ship, the other is an abandoned temple deep in the jungle. All the tests are heavy with volumetric lighting and tessellation, and despite being done in 1280x720 resolution, are relatively taxing. Discontinued in January 2020, 3DMark 11 is now superseded by Time Spy.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 40
+66.7%
| 24−27
−66.7%
|
1440p | 28
+75%
| 16−18
−75%
|
4K | 19
+90%
| 10−12
−90%
|
Cost per frame, $
1080p | 2.15 | no data |
1440p | 3.07 | no data |
4K | 4.53 | no data |
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 16−18
+60%
|
10−11
−60%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 34
+113%
|
16−18
−113%
|
Assassin's Creed Valhalla | 16−18
+100%
|
8−9
−100%
|
Battlefield 5 | 30−35
+83.3%
|
18−20
−83.3%
|
Call of Duty: Modern Warfare | 21−24
+61.5%
|
12−14
−61.5%
|
Cyberpunk 2077 | 16−18
+60%
|
10−11
−60%
|
Far Cry 5 | 24−27
+78.6%
|
14−16
−78.6%
|
Far Cry New Dawn | 30−33
+66.7%
|
18−20
−66.7%
|
Forza Horizon 4 | 70−75
+69%
|
40−45
−69%
|
Hitman 3 | 20−22
+53.8%
|
12−14
−53.8%
|
Horizon Zero Dawn | 55−60
+52.6%
|
35−40
−52.6%
|
Metro Exodus | 44
+159%
|
16−18
−159%
|
Red Dead Redemption 2 | 30−33
+76.5%
|
16−18
−76.5%
|
Shadow of the Tomb Raider | 35−40
+59.1%
|
21−24
−59.1%
|
Watch Dogs: Legion | 65−70
+27.5%
|
50−55
−27.5%
|
Full HD
High Preset
Assassin's Creed Odyssey | 54
+238%
|
16−18
−238%
|
Assassin's Creed Valhalla | 16−18
+100%
|
8−9
−100%
|
Battlefield 5 | 22
+22.2%
|
18−20
−22.2%
|
Call of Duty: Modern Warfare | 21−24
+61.5%
|
12−14
−61.5%
|
Cyberpunk 2077 | 16−18
+60%
|
10−11
−60%
|
Far Cry 5 | 24−27
+78.6%
|
14−16
−78.6%
|
Far Cry New Dawn | 31
+72.2%
|
18−20
−72.2%
|
Forza Horizon 4 | 70−75
+69%
|
40−45
−69%
|
Hitman 3 | 20−22
+53.8%
|
12−14
−53.8%
|
Horizon Zero Dawn | 55−60
+52.6%
|
35−40
−52.6%
|
Metro Exodus | 35
+106%
|
16−18
−106%
|
Red Dead Redemption 2 | 30−33
+76.5%
|
16−18
−76.5%
|
Shadow of the Tomb Raider | 35−40
+59.1%
|
21−24
−59.1%
|
The Witcher 3: Wild Hunt | 27−30
+40%
|
20−22
−40%
|
Watch Dogs: Legion | 65−70
+27.5%
|
50−55
−27.5%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 17
+6.3%
|
16−18
−6.3%
|
Assassin's Creed Valhalla | 16−18
+100%
|
8−9
−100%
|
Call of Duty: Modern Warfare | 21−24
+61.5%
|
12−14
−61.5%
|
Cyberpunk 2077 | 16−18
+60%
|
10−11
−60%
|
Far Cry 5 | 24−27
+78.6%
|
14−16
−78.6%
|
Forza Horizon 4 | 41
−2.4%
|
40−45
+2.4%
|
Hitman 3 | 20−22
+53.8%
|
12−14
−53.8%
|
Horizon Zero Dawn | 36
−5.6%
|
35−40
+5.6%
|
Shadow of the Tomb Raider | 35−40
+59.1%
|
21−24
−59.1%
|
The Witcher 3: Wild Hunt | 23
+15%
|
20−22
−15%
|
Watch Dogs: Legion | 65−70
+27.5%
|
50−55
−27.5%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 30−33
+76.5%
|
16−18
−76.5%
|
1440p
High Preset
Battlefield 5 | 21−24
+75%
|
12−14
−75%
|
Far Cry New Dawn | 16−18
+60%
|
10−11
−60%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 10−11
+66.7%
|
6−7
−66.7%
|
Assassin's Creed Valhalla | 7−8
+250%
|
2−3
−250%
|
Call of Duty: Modern Warfare | 10−12
+83.3%
|
6−7
−83.3%
|
Cyberpunk 2077 | 5−6
+66.7%
|
3−4
−66.7%
|
Far Cry 5 | 12−14
+71.4%
|
7−8
−71.4%
|
Forza Horizon 4 | 45−50
+145%
|
20−22
−145%
|
Hitman 3 | 14−16
+40%
|
10−11
−40%
|
Horizon Zero Dawn | 25
+78.6%
|
14−16
−78.6%
|
Metro Exodus | 16−18
+167%
|
6−7
−167%
|
Shadow of the Tomb Raider | 14−16
+400%
|
3−4
−400%
|
The Witcher 3: Wild Hunt | 10−11
+100%
|
5−6
−100%
|
Watch Dogs: Legion | 65−70
+63.4%
|
40−45
−63.4%
|
1440p
Epic Preset
Red Dead Redemption 2 | 18−20
+63.6%
|
10−12
−63.6%
|
4K
High Preset
Battlefield 5 | 13
+160%
|
5−6
−160%
|
Far Cry New Dawn | 8−9
+100%
|
4−5
−100%
|
Hitman 3 | 7−8
+133%
|
3−4
−133%
|
Horizon Zero Dawn | 45−50
+176%
|
16−18
−176%
|
Metro Exodus | 9−10
+200%
|
3−4
−200%
|
The Witcher 3: Wild Hunt | 12
+300%
|
3−4
−300%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 6−7
+50%
|
4−5
−50%
|
Assassin's Creed Valhalla | 5−6
+66.7%
|
3−4
−66.7%
|
Call of Duty: Modern Warfare | 5−6
+66.7%
|
3−4
−66.7%
|
Cyberpunk 2077 | 1−2 | 0−1 |
Far Cry 5 | 6−7
+100%
|
3−4
−100%
|
Forza Horizon 4 | 12−14
+117%
|
6−7
−117%
|
Shadow of the Tomb Raider | 8−9
+700%
|
1−2
−700%
|
Watch Dogs: Legion | 4−5
+100%
|
2−3
−100%
|
4K
Epic Preset
Red Dead Redemption 2 | 10−11
+42.9%
|
7−8
−42.9%
|
This is how RX 460 and GTX 560M SLI compete in popular games:
- RX 460 is 67% faster in 1080p
- RX 460 is 75% faster in 1440p
- RX 460 is 90% faster in 4K
Here's the range of performance differences observed across popular games:
- in Shadow of the Tomb Raider, with 4K resolution and the Ultra Preset, the RX 460 is 700% faster.
- in Horizon Zero Dawn, with 1080p resolution and the Ultra Preset, the GTX 560M SLI is 6% faster.
All in all, in popular games:
- RX 460 is ahead in 69 tests (97%)
- GTX 560M SLI is ahead in 2 tests (3%)
Pros & cons summary
Performance score | 10.63 | 6.48 |
Recency | 8 August 2016 | 6 January 2011 |
Chip lithography | 14 nm | 40 nm |
Power consumption (TDP) | 75 Watt | 100 Watt |
RX 460 has a 64% higher aggregate performance score, an age advantage of 5 years, a 185.7% more advanced lithography process, and 33.3% lower power consumption.
The Radeon RX 460 is our recommended choice as it beats the GeForce GTX 560M SLI in performance tests.
Be aware that Radeon RX 460 is a desktop card while GeForce GTX 560M SLI is a notebook one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.