RTX 4000 SFF Ada Generation vs Radeon R9 295X2

Aggregate performance score

We've compared Radeon R9 295X2 with RTX 4000 SFF Ada Generation, including specs and performance data.

R9 295X2
2014
8 GB GDDR5, 500 Watt
22.31

RTX 4000 SFF Ada Generation outperforms R9 295X2 by a whopping 145% based on our aggregate benchmark results.

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking24646
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation2.38no data
Power efficiency3.1054.20
ArchitectureGCN 2.0 (2013−2017)Ada Lovelace (2022−2024)
GPU code nameVesuviusAD104
Market segmentDesktopWorkstation
Designreferenceno data
Release date29 April 2014 (10 years ago)21 March 2023 (1 year ago)
Launch price (MSRP)$1,499 no data

Cost-effectiveness evaluation

Performance to price ratio. The higher, the better.

no data

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores28166144
Core clock speedno data720 MHz
Boost clock speed1018 MHz1560 MHz
Number of transistors6,200 million35,800 million
Manufacturing process technology28 nm5 nm
Power consumption (TDP)500 Watt70 Watt
Texture fill rate179.2299.5
Floating-point processing power5.733 TFLOPS19.17 TFLOPS
ROPs6480
TMUs176192
Tensor Coresno data192
Ray Tracing Coresno data48

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Bus supportPCIe 2.1 x16no data
InterfacePCIe 3.0 x16PCIe 4.0 x16
Length307 mm168 mm
Width2-slot2-slot
Supplementary power connectors2 x 8-pinNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR5GDDR6
Maximum RAM amount8 GB20 GB
Memory bus width512 Bit160 Bit
Memory clock speed1250 MHz1750 MHz
Memory bandwidth640 GB/s280.0 GB/s

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors1x DVI, 4x mini-DisplayPort4x mini-DisplayPort 1.4a
Eyefinity+-
HDMI+-

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

CrossFire+-
FreeSync+-
HD3D+-
LiquidVR+-
TressFX+-
UVD+-
DDMA audio+no data

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectXDirectX® 1212 Ultimate (12_2)
Shader Model6.36.8
OpenGL4.64.6
OpenCL2.03.0
Vulkan+1.3
CUDA-8.9

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.


Combined synthetic benchmark score

This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

R9 295X2 22.31
RTX 4000 SFF Ada Generation 54.56
+145%

Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

R9 295X2 8608
RTX 4000 SFF Ada Generation 21055
+145%

Gaming performance

Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.

Pros & cons summary


Performance score 22.31 54.56
Recency 29 April 2014 21 March 2023
Maximum RAM amount 8 GB 20 GB
Chip lithography 28 nm 5 nm
Power consumption (TDP) 500 Watt 70 Watt

RTX 4000 SFF Ada Generation has a 144.6% higher aggregate performance score, an age advantage of 8 years, a 150% higher maximum VRAM amount, a 460% more advanced lithography process, and 614.3% lower power consumption.

The RTX 4000 SFF Ada Generation is our recommended choice as it beats the Radeon R9 295X2 in performance tests.

Be aware that Radeon R9 295X2 is a desktop card while RTX 4000 SFF Ada Generation is a workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon R9 295X2
Radeon R9 295X2
NVIDIA RTX 4000 SFF Ada Generation
RTX 4000 SFF Ada Generation

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.7 94 votes

Rate Radeon R9 295X2 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.3 49 votes

Rate RTX 4000 SFF Ada Generation on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.