GeForce RTX 2050 Mobile vs Radeon R7 M465
Aggregate performance score
We've compared Radeon R7 M465 and GeForce RTX 2050 Mobile, covering specs and all relevant benchmarks.
RTX 2050 Mobile outperforms R7 M465 by a whopping 530% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 774 | 293 |
Place by popularity | not in top-100 | 17 |
Power efficiency | no data | 28.81 |
Architecture | GCN 3.0 (2014−2019) | Ampere (2020−2024) |
GPU code name | Topaz | GA107 |
Market segment | Laptop | Laptop |
Release date | 15 May 2016 (8 years ago) | 17 December 2021 (2 years ago) |
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 384 | 2048 |
Core clock speed | 1100 MHz | 1185 MHz |
Boost clock speed | 1125 MHz | 1477 MHz |
Number of transistors | 1,550 million | no data |
Manufacturing process technology | 28 nm | 8 nm |
Power consumption (TDP) | no data | 45 Watt |
Texture fill rate | 27.00 | 94.53 |
Floating-point processing power | 0.864 TFLOPS | 6.05 TFLOPS |
ROPs | 8 | 32 |
TMUs | 24 | 64 |
Tensor Cores | no data | 256 |
Ray Tracing Cores | no data | 32 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | medium sized | large |
Interface | PCIe 3.0 x8 | PCIe 3.0 x8 |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | DDR3 | GDDR6 |
Maximum RAM amount | 2 GB | 4 GB |
Memory bus width | 64 Bit | 64 Bit |
Memory clock speed | 900 MHz | 1750 MHz |
Memory bandwidth | 14.4 GB/s | 112.0 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | No outputs | 1x DVI, 1x HDMI 2.1, 2x DisplayPort 1.4a |
HDMI | - | + |
G-SYNC support | - | + |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
VR Ready | no data | + |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 (12_0) | 12 Ultimate (12_2) |
Shader Model | 6.3 | 6.6 |
OpenGL | 4.6 | 4.6 |
OpenCL | 2.0 | 3.0 |
Vulkan | 1.2.131 | 1.3 |
CUDA | - | 8.6 |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
3DMark Fire Strike Graphics
Fire Strike is a DirectX 11 benchmark for gaming PCs. It features two separate tests displaying a fight between a humanoid and a fiery creature made of lava. Using 1920x1080 resolution, Fire Strike shows off some realistic graphics and is quite taxing on hardware.
3DMark Cloud Gate GPU
Cloud Gate is an outdated DirectX 11 feature level 10 benchmark that was used for home PCs and basic notebooks. It displays a few scenes of some weird space teleportation device launching spaceships into unknown, using fixed resolution of 1280x720. Just like Ice Storm benchmark, it has been discontinued in January 2020 and replaced by 3DMark Night Raid.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 7−8
−543%
| 45
+543%
|
1440p | 5−6
−620%
| 36
+620%
|
4K | 4−5
−650%
| 30
+650%
|
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 6−7
−717%
|
49
+717%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 9−10
−367%
|
40−45
+367%
|
Assassin's Creed Valhalla | 1−2
−4100%
|
42
+4100%
|
Battlefield 5 | 5−6
−1120%
|
60−65
+1120%
|
Call of Duty: Modern Warfare | 7−8
−443%
|
35−40
+443%
|
Cyberpunk 2077 | 6−7
−600%
|
42
+600%
|
Far Cry 5 | 5−6
−780%
|
40−45
+780%
|
Far Cry New Dawn | 8−9
−525%
|
50−55
+525%
|
Forza Horizon 4 | 14−16
−680%
|
110−120
+680%
|
Hitman 3 | 8−9
−450%
|
44
+450%
|
Horizon Zero Dawn | 21−24
−314%
|
90−95
+314%
|
Metro Exodus | 3−4
−2033%
|
60−65
+2033%
|
Red Dead Redemption 2 | 7−8
−614%
|
50−55
+614%
|
Shadow of the Tomb Raider | 12−14
−408%
|
60−65
+408%
|
Watch Dogs: Legion | 35−40
−126%
|
85−90
+126%
|
Full HD
High Preset
Assassin's Creed Odyssey | 9−10
−367%
|
40−45
+367%
|
Assassin's Creed Valhalla | 1−2
−2000%
|
21
+2000%
|
Battlefield 5 | 5−6
−1120%
|
60−65
+1120%
|
Call of Duty: Modern Warfare | 7−8
−443%
|
35−40
+443%
|
Cyberpunk 2077 | 6−7
−400%
|
30
+400%
|
Far Cry 5 | 5−6
−780%
|
40−45
+780%
|
Far Cry New Dawn | 8−9
−525%
|
50−55
+525%
|
Forza Horizon 4 | 14−16
−680%
|
110−120
+680%
|
Hitman 3 | 8−9
−438%
|
43
+438%
|
Horizon Zero Dawn | 21−24
−314%
|
90−95
+314%
|
Metro Exodus | 3−4
−2033%
|
60−65
+2033%
|
Red Dead Redemption 2 | 7−8
−614%
|
50−55
+614%
|
Shadow of the Tomb Raider | 12−14
−417%
|
62
+417%
|
The Witcher 3: Wild Hunt | 14−16
−200%
|
40−45
+200%
|
Watch Dogs: Legion | 35−40
−126%
|
85−90
+126%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 9−10
−367%
|
40−45
+367%
|
Assassin's Creed Valhalla | 1−2
−600%
|
7
+600%
|
Call of Duty: Modern Warfare | 7−8
−443%
|
35−40
+443%
|
Cyberpunk 2077 | 6−7
−317%
|
25
+317%
|
Far Cry 5 | 5−6
−780%
|
40−45
+780%
|
Forza Horizon 4 | 14−16
−680%
|
110−120
+680%
|
Hitman 3 | 8−9
−388%
|
39
+388%
|
Horizon Zero Dawn | 21−24
−314%
|
90−95
+314%
|
Shadow of the Tomb Raider | 12−14
−358%
|
55
+358%
|
The Witcher 3: Wild Hunt | 14−16
−136%
|
33
+136%
|
Watch Dogs: Legion | 35−40
+117%
|
18
−117%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 7−8
−614%
|
50−55
+614%
|
1440p
High Preset
Battlefield 5 | 5−6
−620%
|
35−40
+620%
|
Far Cry New Dawn | 4−5
−600%
|
27−30
+600%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 2−3
−850%
|
18−20
+850%
|
Call of Duty: Modern Warfare | 2−3
−950%
|
21−24
+950%
|
Cyberpunk 2077 | 1−2
−1000%
|
10−12
+1000%
|
Far Cry 5 | 3−4
−633%
|
21−24
+633%
|
Hitman 3 | 8−9
−175%
|
21−24
+175%
|
Horizon Zero Dawn | 7−8
−443%
|
35−40
+443%
|
The Witcher 3: Wild Hunt | 2−3
−950%
|
21−24
+950%
|
Watch Dogs: Legion | 16−18
−553%
|
110−120
+553%
|
1440p
Epic Preset
Red Dead Redemption 2 | 6−7
−417%
|
30−35
+417%
|
4K
High Preset
Battlefield 5 | 1−2
−1700%
|
18−20
+1700%
|
Far Cry New Dawn | 2−3
−600%
|
14−16
+600%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 2−3
−450%
|
10−12
+450%
|
Assassin's Creed Valhalla | 1−2
−800%
|
9−10
+800%
|
Call of Duty: Modern Warfare | 1−2
−900%
|
10−11
+900%
|
Far Cry 5 | 1−2
−900%
|
10−11
+900%
|
Forza Horizon 4 | 0−1 | 24−27 |
Watch Dogs: Legion | 1−2
−700%
|
8−9
+700%
|
4K
Epic Preset
Red Dead Redemption 2 | 4−5
−300%
|
16−18
+300%
|
1440p
Ultra Preset
Assassin's Creed Valhalla | 16−18
+0%
|
16−18
+0%
|
Forza Horizon 4 | 100−110
+0%
|
100−110
+0%
|
Metro Exodus | 30−35
+0%
|
30−35
+0%
|
Shadow of the Tomb Raider | 47
+0%
|
47
+0%
|
4K
High Preset
Hitman 3 | 14−16
+0%
|
14−16
+0%
|
Horizon Zero Dawn | 95−100
+0%
|
95−100
+0%
|
Metro Exodus | 20−22
+0%
|
20−22
+0%
|
The Witcher 3: Wild Hunt | 18−20
+0%
|
18−20
+0%
|
4K
Ultra Preset
Cyberpunk 2077 | 4−5
+0%
|
4−5
+0%
|
Shadow of the Tomb Raider | 20−22
+0%
|
20−22
+0%
|
This is how R7 M465 and RTX 2050 Mobile compete in popular games:
- RTX 2050 Mobile is 543% faster in 1080p
- RTX 2050 Mobile is 620% faster in 1440p
- RTX 2050 Mobile is 650% faster in 4K
Here's the range of performance differences observed across popular games:
- in Watch Dogs: Legion, with 1080p resolution and the Ultra Preset, the R7 M465 is 117% faster.
- in Assassin's Creed Valhalla, with 1080p resolution and the Medium Preset, the RTX 2050 Mobile is 4100% faster.
All in all, in popular games:
- R7 M465 is ahead in 1 test (1%)
- RTX 2050 Mobile is ahead in 60 tests (85%)
- there's a draw in 10 tests (14%)
Pros & cons summary
Performance score | 2.96 | 18.64 |
Recency | 15 May 2016 | 17 December 2021 |
Maximum RAM amount | 2 GB | 4 GB |
Chip lithography | 28 nm | 8 nm |
RTX 2050 Mobile has a 529.7% higher aggregate performance score, an age advantage of 5 years, a 100% higher maximum VRAM amount, and a 250% more advanced lithography process.
The GeForce RTX 2050 Mobile is our recommended choice as it beats the Radeon R7 M465 in performance tests.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.