HD Graphics 530 vs Radeon R7 265

#ad 
Buy on Amazon
VS

Aggregate performance score

We've compared Radeon R7 265 with HD Graphics 530, including specs and performance data.

R7 265
2014
4 GB GDDR5, 150 Watt
10.44
+302%

R7 265 outperforms HD Graphics 530 by a whopping 302% based on our aggregate benchmark results.

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking438822
Place by popularitynot in top-10094
Cost-effectiveness evaluation5.23no data
Power efficiency4.8011.96
ArchitectureGCN 1.0 (2011−2020)Generation 9.0 (2015−2016)
GPU code namePitcairnSkylake GT2
Market segmentDesktopLaptop
Designreferenceno data
Release date13 February 2014 (10 years ago)1 September 2015 (9 years ago)
Launch price (MSRP)$149 no data

Cost-effectiveness evaluation

Performance to price ratio. The higher, the better.

no data

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores1024192
Core clock speedno data350 MHz
Boost clock speed925 MHz950 MHz
Number of transistors2,800 million189 million
Manufacturing process technology28 nm14 nm+
Power consumption (TDP)150 Watt15 Watt
Texture fill rate59.2022.80
Floating-point processing power1.894 TFLOPS0.3648 TFLOPS
ROPs323
TMUs6424

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Bus supportPCIe 3.0no data
InterfacePCIe 3.0 x16Ring Bus
Length210 mmno data
Width2-slotno data
Supplementary power connectors1 x 6-pinno data

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR5DDR3L/LPDDR3/LPDDR4
Maximum RAM amount4 GB64 GB
Memory bus width256 BitSystem Shared
Memory clock speed1400 MHzSystem Shared
Memory bandwidth179.2 GB/sno data
Shared memory-+

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors2x DVI, 1x HDMI, 1x DisplayPortPortable Device Dependent
Eyefinity+-
HDMI+-

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

CrossFire+-
FreeSync+-
DDMA audio+no data
Quick Syncno data+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectXDirectX® 1212 (12_1)
Shader Model5.16.4
OpenGL4.64.6
OpenCL1.23.0
Vulkan-+

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.


Combined synthetic benchmark score

This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

R7 265 10.44
+302%
HD Graphics 530 2.60

3DMark Fire Strike Graphics

Fire Strike is a DirectX 11 benchmark for gaming PCs. It features two separate tests displaying a fight between a humanoid and a fiery creature made of lava. Using 1920x1080 resolution, Fire Strike shows off some realistic graphics and is quite taxing on hardware.

R7 265 5220
+458%
HD Graphics 530 935

Gaming performance

Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.

Average FPS across all PC games

Here are the average frames per second in a large set of popular games across different resolutions:

Full HD50−55
+285%
13
−285%
4K27−30
+286%
7
−286%

Cost per frame, $

1080p2.98no data
4K5.52no data

FPS performance in popular games

Full HD
Low Preset

Counter-Strike 2 10−11
+0%
10−11
+0%
Cyberpunk 2077 6−7
+0%
6−7
+0%
Elden Ring 5−6
+0%
5−6
+0%

Full HD
Medium Preset

Battlefield 5 6−7
+0%
6−7
+0%
Counter-Strike 2 10−11
+0%
10−11
+0%
Cyberpunk 2077 6−7
+0%
6−7
+0%
Forza Horizon 4 12−14
+0%
12−14
+0%
Metro Exodus 4−5
+0%
4−5
+0%
Red Dead Redemption 2 10−11
+0%
10−11
+0%

Full HD
High Preset

Battlefield 5 6−7
+0%
6−7
+0%
Counter-Strike 2 10−11
+0%
10−11
+0%
Cyberpunk 2077 6−7
+0%
6−7
+0%
Dota 2 8
+0%
8
+0%
Elden Ring 5−6
+0%
5−6
+0%
Far Cry 5 14−16
+0%
14−16
+0%
Fortnite 14−16
+0%
14−16
+0%
Forza Horizon 4 12−14
+0%
12−14
+0%
Grand Theft Auto V 7−8
+0%
7−8
+0%
Metro Exodus 4−5
+0%
4−5
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 26
+0%
26
+0%
Red Dead Redemption 2 10−11
+0%
10−11
+0%
The Witcher 3: Wild Hunt 6
+0%
6
+0%
World of Tanks 45−50
+0%
45−50
+0%

Full HD
Ultra Preset

Battlefield 5 6−7
+0%
6−7
+0%
Counter-Strike 2 10−11
+0%
10−11
+0%
Cyberpunk 2077 6−7
+0%
6−7
+0%
Dota 2 20
+0%
20
+0%
Far Cry 5 14−16
+0%
14−16
+0%
Forza Horizon 4 12−14
+0%
12−14
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 24−27
+0%
24−27
+0%

1440p
High Preset

Elden Ring 2−3
+0%
2−3
+0%
Grand Theft Auto V 0−1 0−1
PLAYERUNKNOWN'S BATTLEGROUNDS 18−20
+0%
18−20
+0%
Red Dead Redemption 2 1−2
+0%
1−2
+0%
World of Tanks 16−18
+0%
16−18
+0%

1440p
Ultra Preset

Battlefield 5 2−3
+0%
2−3
+0%
Counter-Strike 2 9−10
+0%
9−10
+0%
Cyberpunk 2077 3−4
+0%
3−4
+0%
Far Cry 5 7−8
+0%
7−8
+0%
The Witcher 3: Wild Hunt 4−5
+0%
4−5
+0%
Valorant 9−10
+0%
9−10
+0%

4K
High Preset

Dota 2 16−18
+0%
16−18
+0%
Elden Ring 1−2
+0%
1−2
+0%
Grand Theft Auto V 14−16
+0%
14−16
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 7−8
+0%
7−8
+0%
Red Dead Redemption 2 1−2
+0%
1−2
+0%
The Witcher 3: Wild Hunt 14−16
+0%
14−16
+0%

4K
Ultra Preset

Battlefield 5 2−3
+0%
2−3
+0%
Cyberpunk 2077 1−2
+0%
1−2
+0%
Dota 2 7
+0%
7
+0%
Far Cry 5 2−3
+0%
2−3
+0%
Fortnite 1−2
+0%
1−2
+0%
Valorant 2−3
+0%
2−3
+0%

This is how R7 265 and HD Graphics 530 compete in popular games:

  • R7 265 is 285% faster in 1080p
  • R7 265 is 286% faster in 4K

All in all, in popular games:

  • there's a draw in 52 tests (100%)

Pros & cons summary


Performance score 10.44 2.60
Recency 13 February 2014 1 September 2015
Maximum RAM amount 4 GB 64 GB
Chip lithography 28 nm 14 nm
Power consumption (TDP) 150 Watt 15 Watt

R7 265 has a 301.5% higher aggregate performance score.

HD Graphics 530, on the other hand, has an age advantage of 1 year, a 1500% higher maximum VRAM amount, a 100% more advanced lithography process, and 900% lower power consumption.

The Radeon R7 265 is our recommended choice as it beats the HD Graphics 530 in performance tests.

Be aware that Radeon R7 265 is a desktop card while HD Graphics 530 is a notebook one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon R7 265
Radeon R7 265
Intel HD Graphics 530
HD Graphics 530

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.1 373 votes

Rate Radeon R7 265 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.1 1569 votes

Rate HD Graphics 530 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.