Radeon Pro 5300M vs R7 240

#ad 
Buy on Amazon
VS

Aggregate performance score

We've compared Radeon R7 240 with Radeon Pro 5300M, including specs and performance data.

R7 240
2013
2 GB GDDR5, 50 Watt
2.33

Pro 5300M outperforms R7 240 by a whopping 569% based on our aggregate benchmark results.

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking852346
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation0.16no data
Power efficiency5.3612.65
ArchitectureGCN 1.0 (2011−2020)RDNA 1.0 (2019−2020)
GPU code nameOlandNavi 14
Market segmentDesktopMobile workstation
Designreferenceno data
Release date8 October 2013 (11 years ago)13 November 2019 (5 years ago)
Launch price (MSRP)$69 no data

Cost-effectiveness evaluation

Performance to price ratio. The higher, the better.

no data

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores3201280
Core clock speedno data1000 MHz
Boost clock speed780 MHz1250 MHz
Number of transistors950 million6,400 million
Manufacturing process technology28 nm7 nm
Power consumption (TDP)50 Watt85 Watt
Texture fill rate14.00100.0
Floating-point processing power0.448 TFLOPS3.2 TFLOPS
ROPs832
TMUs2080

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizeno datamedium sized
Bus supportPCIe 3.0no data
InterfacePCIe 3.0 x8PCIe 4.0 x8
Length168 mmno data
Width1-slotno data
Supplementary power connectorsN/ANone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR5GDDR6
Maximum RAM amount2 GB4 GB
Memory bus width128 Bit128 Bit
Memory clock speed1150 MHz1500 MHz
Memory bandwidth72 GB/s192.0 GB/s
Shared memory--

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors1x DVI, 1x HDMI, 1x VGANo outputs
HDMI+-

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

CrossFire+-
FreeSync+-
DDMA audio+no data

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectXDirectX® 1212 (12_1)
Shader Model5.16.5
OpenGL4.64.6
OpenCL1.22.0
Vulkan-1.2.131

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.


Combined synthetic benchmark score

This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

R7 240 2.33
Pro 5300M 15.58
+569%

Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

R7 240 897
Pro 5300M 5989
+568%

Gaming performance

Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.

FPS performance in popular games

Full HD
Low Preset

Counter-Strike 2 27−30
+0%
27−30
+0%
Cyberpunk 2077 30−35
+0%
30−35
+0%
Elden Ring 45−50
+0%
45−50
+0%

Full HD
Medium Preset

Battlefield 5 50−55
+0%
50−55
+0%
Counter-Strike 2 27−30
+0%
27−30
+0%
Cyberpunk 2077 30−35
+0%
30−35
+0%
Forza Horizon 4 60−65
+0%
60−65
+0%
Metro Exodus 40−45
+0%
40−45
+0%
Red Dead Redemption 2 35−40
+0%
35−40
+0%
Valorant 60−65
+0%
60−65
+0%

Full HD
High Preset

Battlefield 5 50−55
+0%
50−55
+0%
Counter-Strike 2 27−30
+0%
27−30
+0%
Cyberpunk 2077 30−35
+0%
30−35
+0%
Dota 2 55−60
+0%
55−60
+0%
Elden Ring 45−50
+0%
45−50
+0%
Far Cry 5 55−60
+0%
55−60
+0%
Fortnite 85−90
+0%
85−90
+0%
Forza Horizon 4 60−65
+0%
60−65
+0%
Grand Theft Auto V 55−60
+0%
55−60
+0%
Metro Exodus 40−45
+0%
40−45
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 110−120
+0%
110−120
+0%
Red Dead Redemption 2 35−40
+0%
35−40
+0%
The Witcher 3: Wild Hunt 45−50
+0%
45−50
+0%
Valorant 60−65
+0%
60−65
+0%
World of Tanks 190−200
+0%
190−200
+0%

Full HD
Ultra Preset

Battlefield 5 50−55
+0%
50−55
+0%
Counter-Strike 2 27−30
+0%
27−30
+0%
Cyberpunk 2077 30−35
+0%
30−35
+0%
Dota 2 55−60
+0%
55−60
+0%
Far Cry 5 55−60
+0%
55−60
+0%
Forza Horizon 4 60−65
+0%
60−65
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 110−120
+0%
110−120
+0%
Valorant 60−65
+0%
60−65
+0%

1440p
High Preset

Dota 2 21−24
+0%
21−24
+0%
Elden Ring 24−27
+0%
24−27
+0%
Grand Theft Auto V 21−24
+0%
21−24
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 140−150
+0%
140−150
+0%
Red Dead Redemption 2 14−16
+0%
14−16
+0%
World of Tanks 100−110
+0%
100−110
+0%

1440p
Ultra Preset

Battlefield 5 30−35
+0%
30−35
+0%
Counter-Strike 2 12−14
+0%
12−14
+0%
Cyberpunk 2077 12−14
+0%
12−14
+0%
Far Cry 5 35−40
+0%
35−40
+0%
Forza Horizon 4 35−40
+0%
35−40
+0%
Metro Exodus 30−35
+0%
30−35
+0%
The Witcher 3: Wild Hunt 20−22
+0%
20−22
+0%
Valorant 35−40
+0%
35−40
+0%

4K
High Preset

Counter-Strike 2 10−12
+0%
10−12
+0%
Dota 2 27−30
+0%
27−30
+0%
Elden Ring 10−12
+0%
10−12
+0%
Grand Theft Auto V 27−30
+0%
27−30
+0%
Metro Exodus 10−12
+0%
10−12
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 45−50
+0%
45−50
+0%
Red Dead Redemption 2 10−11
+0%
10−11
+0%
The Witcher 3: Wild Hunt 27−30
+0%
27−30
+0%

4K
Ultra Preset

Battlefield 5 14−16
+0%
14−16
+0%
Counter-Strike 2 10−12
+0%
10−12
+0%
Cyberpunk 2077 4−5
+0%
4−5
+0%
Dota 2 27−30
+0%
27−30
+0%
Far Cry 5 20−22
+0%
20−22
+0%
Fortnite 18−20
+0%
18−20
+0%
Forza Horizon 4 21−24
+0%
21−24
+0%
Valorant 16−18
+0%
16−18
+0%

All in all, in popular games:

  • there's a draw in 63 tests (100%)

Pros & cons summary


Performance score 2.33 15.58
Recency 8 October 2013 13 November 2019
Maximum RAM amount 2 GB 4 GB
Chip lithography 28 nm 7 nm
Power consumption (TDP) 50 Watt 85 Watt

R7 240 has 70% lower power consumption.

Pro 5300M, on the other hand, has a 568.7% higher aggregate performance score, an age advantage of 6 years, a 100% higher maximum VRAM amount, and a 300% more advanced lithography process.

The Radeon Pro 5300M is our recommended choice as it beats the Radeon R7 240 in performance tests.

Be aware that Radeon R7 240 is a desktop card while Radeon Pro 5300M is a mobile workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon R7 240
Radeon R7 240
AMD Radeon Pro 5300M
Radeon Pro 5300M

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.3 1215 votes

Rate Radeon R7 240 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4 172 votes

Rate Radeon Pro 5300M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.