A800 SXM4 80 GB vs Radeon R5 A320

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot ratednot rated
Place by popularitynot in top-100not in top-100
ArchitectureGCN 1.0 (2011−2020)Ampere (2020−2024)
GPU code nameJetGA100
Market segmentDesktopWorkstation
Release date2015 (9 years ago)11 August 2022 (2 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores3206912
Core clock speed750 MHz1275 MHz
Boost clock speed825 MHz1410 MHz
Number of transistors690 million54,200 million
Manufacturing process technology28 nm7 nm
Power consumption (TDP)no data400 Watt
Texture fill rate16.50609.1
Floating-point processing powerno data19.49 TFLOPS
ROPs8160
TMUs20432
Tensor Coresno data432

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfacePCIe 3.0 x8PCIe 4.0 x16
Widthno dataIGP
Supplementary power connectorsno dataNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeDDR3HBM2e
Maximum RAM amount1 GB80 GB
Memory bus width64 Bit5120 Bit
Memory clock speed2 GB/s1593 MHz
Memory bandwidth16 GB/s2,039 GB/s

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsPortable Device DependentNo outputs

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (11_1)N/A
Shader Model6.5 (5.1)N/A
OpenGL4.6N/A
OpenCL2.1 (1.2)3.0
Vulkan1.2.170N/A
CUDA-8.0

Pros & cons summary


Maximum RAM amount 1 GB 80 GB
Chip lithography 28 nm 7 nm

A800 SXM4 80 GB has a 7900% higher maximum VRAM amount, and a 300% more advanced lithography process.

We couldn't decide between Radeon R5 A320 and A800 SXM4 80 GB. We've got no test results to judge.

Be aware that Radeon R5 A320 is a desktop card while A800 SXM4 80 GB is a workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon R5 A320
Radeon R5 A320
NVIDIA A800 SXM4 80 GB
A800 SXM4 80 GB

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


4 4 votes

Rate Radeon R5 A320 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.7 3 votes

Rate A800 SXM4 80 GB on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.