GeForce GTX 1650 TU106 vs Radeon R5 340X OEM

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot ratednot rated
Place by popularitynot in top-100not in top-100
ArchitectureGCN 1.0 (2011−2020)Turing (2018−2022)
GPU code nameOlandTU106
Market segmentDesktopDesktop
Release date5 May 2015 (9 years ago)18 June 2020 (4 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores384896
Core clock speed900 MHz1410 MHz
Boost clock speed1050 MHz1590 MHz
Number of transistors950 million10,800 million
Manufacturing process technology28 nm12 nm
Power consumption (TDP)65 Watt90 Watt
Texture fill rate21.6089.04
Floating-point processing power0.6912 TFLOPS2.849 TFLOPS
ROPs832
TMUs2456
Tensor Coresno data112
Ray Tracing Coresno data14

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfacePCIe 3.0 x8PCIe 3.0 x16
Length145 mm229 mm
Width1-slot2-slot
Supplementary power connectorsNone1x 6-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeDDR3GDDR6
Maximum RAM amount2 GB4 GB
Memory bus width64 Bit128 Bit
Memory clock speed1000 MHz1500 MHz
Memory bandwidth16 GB/s192.0 GB/s

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors1x DVI, 1x DisplayPort1x DVI, 1x HDMI, 1x DisplayPort
HDMI-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (11_1)12 Ultimate (12_2)
Shader Model5.16.5
OpenGL4.64.6
OpenCL1.21.2
Vulkan1.2.1311.2
CUDA-7.5

Pros & cons summary


Recency 5 May 2015 18 June 2020
Maximum RAM amount 2 GB 4 GB
Chip lithography 28 nm 12 nm
Power consumption (TDP) 65 Watt 90 Watt

R5 340X OEM has 38.5% lower power consumption.

GTX 1650 TU106, on the other hand, has an age advantage of 5 years, a 100% higher maximum VRAM amount, and a 133.3% more advanced lithography process.

We couldn't decide between Radeon R5 340X OEM and GeForce GTX 1650 TU106. We've got no test results to judge.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon R5 340X OEM
Radeon R5 340X OEM
NVIDIA GeForce GTX 1650 TU106
GeForce GTX 1650 TU106

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.5 461 vote

Rate Radeon R5 340X OEM on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.6 274 votes

Rate GeForce GTX 1650 TU106 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.