Quadro P520 vs Radeon R5 240 OEM

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot rated614
Place by popularitynot in top-100not in top-100
Power efficiencyno data20.73
ArchitectureGCN 1.0 (2011−2020)Pascal (2016−2021)
GPU code nameOlandGP108
Market segmentDesktopMobile workstation
Release date1 November 2013 (11 years ago)23 May 2019 (5 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores384384
Core clock speed730 MHz1303 MHz
Boost clock speed780 MHz1493 MHz
Number of transistors950 million1,800 million
Manufacturing process technology28 nm14 nm
Power consumption (TDP)50 Watt18 Watt
Texture fill rate18.7235.83
Floating-point processing power0.599 TFLOPS1.147 TFLOPS
ROPs816
TMUs2424

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizeno datalarge
InterfacePCIe 3.0 x8PCIe 3.0 x16
Length168 mmno data
Width1-slotno data
Supplementary power connectorsNoneNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeDDR3GDDR5
Maximum RAM amount2 GB2 GB
Memory bus width64 Bit64 Bit
Memory clock speed900 MHz1502 MHz
Memory bandwidth14.4 GB/s48.06 GB/s
Shared memoryno data-

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors1x DVI, 1x HDMI, 1x VGANo outputs
HDMI+-

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (11_1)12 (12_1)
Shader Model5.16.4
OpenGL4.64.6
OpenCL1.21.2
Vulkan1.2.1311.2.131
CUDA-6.1

Pros & cons summary


Recency 1 November 2013 23 May 2019
Chip lithography 28 nm 14 nm
Power consumption (TDP) 50 Watt 18 Watt

Quadro P520 has an age advantage of 5 years, a 100% more advanced lithography process, and 177.8% lower power consumption.

We couldn't decide between Radeon R5 240 OEM and Quadro P520. We've got no test results to judge.

Be aware that Radeon R5 240 OEM is a desktop card while Quadro P520 is a mobile workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon R5 240 OEM
Radeon R5 240 OEM
NVIDIA Quadro P520
Quadro P520

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.6 556 votes

Rate Radeon R5 240 OEM on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.4 104 votes

Rate Quadro P520 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.