RTX A4000 vs Radeon Pro W5700

#ad 
Buy on Amazon
VS

Aggregate performance score

We've compared Radeon Pro W5700 and RTX A4000, covering specs and all relevant benchmarks.

Pro W5700
2019
8 GB GDDR6, 205 Watt
39.04

RTX A4000 outperforms Pro W5700 by a significant 29% based on our aggregate benchmark results.

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking11358
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation47.39no data
Power efficiency13.9826.37
ArchitectureRDNA 1.0 (2019−2020)Ampere (2020−2024)
GPU code nameNavi 10GA104
Market segmentWorkstationWorkstation
Release date19 November 2019 (4 years ago)12 April 2021 (3 years ago)
Launch price (MSRP)$799 no data

Cost-effectiveness evaluation

Performance to price ratio. The higher, the better.

no data

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores23046144
Core clock speed1243 MHz735 MHz
Boost clock speed1930 MHz1560 MHz
Number of transistors10,300 million17,400 million
Manufacturing process technology7 nm8 nm
Power consumption (TDP)205 Watt140 Watt
Texture fill rate277.9299.5
Floating-point processing power8.893 TFLOPS19.17 TFLOPS
ROPs6496
TMUs144192
Tensor Coresno data192
Ray Tracing Coresno data48

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfacePCIe 4.0 x16PCIe 4.0 x16
Length305 mm241 mm
Width2-slot1-slot
Supplementary power connectors1x 6-pin + 1x 8-pin1x 6-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR6GDDR6
Maximum RAM amount8 GB16 GB
Memory bus width256 Bit256 Bit
Memory clock speed1750 MHz1750 MHz
Memory bandwidth448.0 GB/s448.0 GB/s

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors5x mini-DisplayPort, 1x USB Type-C4x DisplayPort 1.4a

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_1)12 Ultimate (12_2)
Shader Model6.56.7
OpenGL4.64.6
OpenCL2.03.0
Vulkan1.2.1311.3
CUDA-8.6

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.


Combined synthetic benchmark score

This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Pro W5700 39.04
RTX A4000 50.31
+28.9%

Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

Pro W5700 15057
RTX A4000 19404
+28.9%

Gaming performance

Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.

Pros & cons summary


Performance score 39.04 50.31
Recency 19 November 2019 12 April 2021
Maximum RAM amount 8 GB 16 GB
Chip lithography 7 nm 8 nm
Power consumption (TDP) 205 Watt 140 Watt

Pro W5700 has a 14.3% more advanced lithography process.

RTX A4000, on the other hand, has a 28.9% higher aggregate performance score, an age advantage of 1 year, a 100% higher maximum VRAM amount, and 46.4% lower power consumption.

The RTX A4000 is our recommended choice as it beats the Radeon Pro W5700 in performance tests.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon Pro W5700
Radeon Pro W5700
NVIDIA RTX A4000
RTX A4000

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.9 89 votes

Rate Radeon Pro W5700 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4 622 votes

Rate RTX A4000 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.