Quadro RTX 3000 Max-Q vs Radeon Pro SSG
Aggregate performance score
We've compared Radeon Pro SSG with Quadro RTX 3000 Max-Q, including specs and performance data.
Pro SSG outperforms RTX 3000 Max-Q by a substantial 32% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 197 | 255 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 1.09 | no data |
Power efficiency | 7.53 | 24.73 |
Architecture | GCN 3.0 (2014−2019) | Turing (2018−2022) |
GPU code name | Fiji | TU106 |
Market segment | Workstation | Mobile workstation |
Release date | 26 July 2016 (8 years ago) | 27 May 2019 (5 years ago) |
Launch price (MSRP) | $9,999 | no data |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 4096 | 2304 |
Core clock speed | 1000 MHz | 600 MHz |
Boost clock speed | 1050 MHz | 1215 MHz |
Number of transistors | 8,900 million | 10,800 million |
Manufacturing process technology | 28 nm | 12 nm |
Power consumption (TDP) | 260 Watt | 60 Watt |
Texture fill rate | 268.8 | 175.0 |
Floating-point processing power | 8.602 TFLOPS | 5.599 TFLOPS |
ROPs | 64 | 64 |
TMUs | 256 | 144 |
Tensor Cores | no data | 288 |
Ray Tracing Cores | no data | 36 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | no data | large |
Interface | PCIe 3.0 x16 | PCIe 3.0 x16 |
Length | 267 mm | no data |
Width | 2-slot | no data |
Supplementary power connectors | 1x 6-pin + 1x 8-pin | None |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | HBM | GDDR6 |
Maximum RAM amount | 4 GB | 6 GB |
Memory bus width | 4096 Bit | 256 Bit |
Memory clock speed | 500 MHz | 1750 MHz |
Memory bandwidth | 512.0 GB/s | 448.0 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | 1x HDMI 1.4a, 3x mini-DisplayPort 1.2 | No outputs |
HDMI | + | - |
G-SYNC support | - | + |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
VR Ready | no data | + |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 (12_0) | 12 Ultimate (12_1) |
Shader Model | 6.5 | 6.5 |
OpenGL | 4.6 | 4.6 |
OpenCL | 2.1 | 1.2 |
Vulkan | 1.2.170 | 1.2.131 |
CUDA | - | 7.5 |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Passmark
This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 95−100
+28.4%
| 74
−28.4%
|
1440p | 60−65
+30.4%
| 46
−30.4%
|
4K | 40−45
+25%
| 32
−25%
|
Cost per frame, $
1080p | 105.25 | no data |
1440p | 166.65 | no data |
4K | 249.98 | no data |
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 30−35
+0%
|
30−35
+0%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 45−50
+0%
|
45−50
+0%
|
Assassin's Creed Valhalla | 60
+0%
|
60
+0%
|
Battlefield 5 | 70−75
+0%
|
70−75
+0%
|
Call of Duty: Modern Warfare | 65
+0%
|
65
+0%
|
Cyberpunk 2077 | 30−35
+0%
|
30−35
+0%
|
Far Cry 5 | 50−55
+0%
|
50−55
+0%
|
Far Cry New Dawn | 55−60
+0%
|
55−60
+0%
|
Forza Horizon 4 | 130−140
+0%
|
130−140
+0%
|
Hitman 3 | 88
+0%
|
88
+0%
|
Horizon Zero Dawn | 100−110
+0%
|
100−110
+0%
|
Metro Exodus | 70−75
+0%
|
70−75
+0%
|
Red Dead Redemption 2 | 77
+0%
|
77
+0%
|
Shadow of the Tomb Raider | 70−75
+0%
|
70−75
+0%
|
Watch Dogs: Legion | 95−100
+0%
|
95−100
+0%
|
Full HD
High Preset
Assassin's Creed Odyssey | 45−50
+0%
|
45−50
+0%
|
Assassin's Creed Valhalla | 50
+0%
|
50
+0%
|
Battlefield 5 | 70−75
+0%
|
70−75
+0%
|
Call of Duty: Modern Warfare | 59
+0%
|
59
+0%
|
Cyberpunk 2077 | 30−35
+0%
|
30−35
+0%
|
Far Cry 5 | 50−55
+0%
|
50−55
+0%
|
Far Cry New Dawn | 55−60
+0%
|
55−60
+0%
|
Forza Horizon 4 | 130−140
+0%
|
130−140
+0%
|
Hitman 3 | 66
+0%
|
66
+0%
|
Horizon Zero Dawn | 100−110
+0%
|
100−110
+0%
|
Metro Exodus | 70−75
+0%
|
70−75
+0%
|
Red Dead Redemption 2 | 67
+0%
|
67
+0%
|
Shadow of the Tomb Raider | 70−75
+0%
|
70−75
+0%
|
The Witcher 3: Wild Hunt | 45−50
+0%
|
45−50
+0%
|
Watch Dogs: Legion | 95−100
+0%
|
95−100
+0%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 45−50
+0%
|
45−50
+0%
|
Assassin's Creed Valhalla | 44
+0%
|
44
+0%
|
Call of Duty: Modern Warfare | 45
+0%
|
45
+0%
|
Cyberpunk 2077 | 30−35
+0%
|
30−35
+0%
|
Far Cry 5 | 50−55
+0%
|
50−55
+0%
|
Forza Horizon 4 | 130−140
+0%
|
130−140
+0%
|
Hitman 3 | 59
+0%
|
59
+0%
|
Horizon Zero Dawn | 100−110
+0%
|
100−110
+0%
|
Shadow of the Tomb Raider | 70−75
+0%
|
70−75
+0%
|
The Witcher 3: Wild Hunt | 52
+0%
|
52
+0%
|
Watch Dogs: Legion | 33
+0%
|
33
+0%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 66
+0%
|
66
+0%
|
1440p
High Preset
Battlefield 5 | 40−45
+0%
|
40−45
+0%
|
Far Cry New Dawn | 30−35
+0%
|
30−35
+0%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 21−24
+0%
|
21−24
+0%
|
Assassin's Creed Valhalla | 20−22
+0%
|
20−22
+0%
|
Call of Duty: Modern Warfare | 32
+0%
|
32
+0%
|
Cyberpunk 2077 | 12−14
+0%
|
12−14
+0%
|
Far Cry 5 | 24−27
+0%
|
24−27
+0%
|
Forza Horizon 4 | 120−130
+0%
|
120−130
+0%
|
Hitman 3 | 24−27
+0%
|
24−27
+0%
|
Horizon Zero Dawn | 40−45
+0%
|
40−45
+0%
|
Metro Exodus | 40−45
+0%
|
40−45
+0%
|
Shadow of the Tomb Raider | 45−50
+0%
|
45−50
+0%
|
The Witcher 3: Wild Hunt | 24−27
+0%
|
24−27
+0%
|
Watch Dogs: Legion | 120−130
+0%
|
120−130
+0%
|
1440p
Epic Preset
Red Dead Redemption 2 | 47
+0%
|
47
+0%
|
4K
High Preset
Battlefield 5 | 21−24
+0%
|
21−24
+0%
|
Far Cry New Dawn | 16−18
+0%
|
16−18
+0%
|
Hitman 3 | 24
+0%
|
24
+0%
|
Horizon Zero Dawn | 110−120
+0%
|
110−120
+0%
|
Metro Exodus | 21−24
+0%
|
21−24
+0%
|
The Witcher 3: Wild Hunt | 34
+0%
|
34
+0%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 12−14
+0%
|
12−14
+0%
|
Assassin's Creed Valhalla | 19
+0%
|
19
+0%
|
Call of Duty: Modern Warfare | 16
+0%
|
16
+0%
|
Cyberpunk 2077 | 5−6
+0%
|
5−6
+0%
|
Far Cry 5 | 12−14
+0%
|
12−14
+0%
|
Forza Horizon 4 | 27−30
+0%
|
27−30
+0%
|
Shadow of the Tomb Raider | 24−27
+0%
|
24−27
+0%
|
Watch Dogs: Legion | 12
+0%
|
12
+0%
|
4K
Epic Preset
Red Dead Redemption 2 | 24
+0%
|
24
+0%
|
This is how Pro SSG and RTX 3000 Max-Q compete in popular games:
- Pro SSG is 28% faster in 1080p
- Pro SSG is 30% faster in 1440p
- Pro SSG is 25% faster in 4K
All in all, in popular games:
- there's a draw in 72 tests (100%)
Pros & cons summary
Performance score | 28.49 | 21.60 |
Recency | 26 July 2016 | 27 May 2019 |
Maximum RAM amount | 4 GB | 6 GB |
Chip lithography | 28 nm | 12 nm |
Power consumption (TDP) | 260 Watt | 60 Watt |
Pro SSG has a 31.9% higher aggregate performance score.
RTX 3000 Max-Q, on the other hand, has an age advantage of 2 years, a 50% higher maximum VRAM amount, a 133.3% more advanced lithography process, and 333.3% lower power consumption.
The Radeon Pro SSG is our recommended choice as it beats the Quadro RTX 3000 Max-Q in performance tests.
Be aware that Radeon Pro SSG is a workstation card while Quadro RTX 3000 Max-Q is a mobile workstation one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.