UHD Graphics 605 vs Radeon HD 6320

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot rated1067
Place by popularitynot in top-100not in top-100
Power efficiencyno data16.31
ArchitectureTeraScale 2 (2009−2015)Generation 9.5 (2016−2020)
GPU code nameLovelandGemini Lake GT1.5
Market segmentLaptopLaptop
Release date15 August 2011 (13 years ago)11 December 2017 (6 years ago)
Launch price (MSRP)$554.99 no data

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores80144
Core clock speed508 MHz200 MHz
Boost clock speed600 MHz750 MHz
Number of transistors450 million189 million
Manufacturing process technology40 nm14 nm
Power consumption (TDP)18 Watt5 Watt
Texture fill rate4.06413.50
Floating-point processing power0.08128 TFLOPS0.216 TFLOPS
ROPs43
TMUs818

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfaceIGPRing Bus

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeSystem SharedSystem Shared
Maximum RAM amountSystem SharedSystem Shared
Memory bus widthSystem SharedSystem Shared
Memory clock speedSystem SharedSystem Shared
Shared memory++

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputsPortable Device Dependent

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

Quick Syncno data+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX11.2 (11_0)12 (12_1)
Shader Model5.06.4
OpenGL4.44.6
OpenCL1.23.0
VulkanN/A1.3

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.



Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

HD 6320 147
UHD Graphics 605 453
+208%

3DMark 11 Performance GPU

3DMark 11 is an obsolete DirectX 11 benchmark by Futuremark. It used four tests based on two scenes, one being few submarines exploring the submerged wreck of a sunken ship, the other is an abandoned temple deep in the jungle. All the tests are heavy with volumetric lighting and tessellation, and despite being done in 1280x720 resolution, are relatively taxing. Discontinued in January 2020, 3DMark 11 is now superseded by Time Spy.

HD 6320 302
UHD Graphics 605 648
+115%

3DMark Vantage Performance

3DMark Vantage is an outdated DirectX 10 benchmark using 1280x1024 screen resolution. It taxes the graphics card with two scenes, one depicting a girl escaping some militarized base located within a sea cave, the other displaying a space fleet attack on a defenseless planet. It was discontinued in April 2017, and Time Spy benchmark is now recommended to be used instead.

HD 6320 892
UHD Graphics 605 2162
+143%

Pros & cons summary


Recency 15 August 2011 11 December 2017
Chip lithography 40 nm 14 nm
Power consumption (TDP) 18 Watt 5 Watt

UHD Graphics 605 has an age advantage of 6 years, a 185.7% more advanced lithography process, and 260% lower power consumption.

We couldn't decide between Radeon HD 6320 and UHD Graphics 605. We've got no test results to judge.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon HD 6320
Radeon HD 6320
Intel UHD Graphics 605
UHD Graphics 605

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3 190 votes

Rate Radeon HD 6320 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.7 804 votes

Rate UHD Graphics 605 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.