GeForce RTX 2080 Super Mobile vs Quadro RTX 5000
Aggregate performance score
We've compared Quadro RTX 5000 with GeForce RTX 2080 Super Mobile, including specs and performance data.
RTX 5000 outperforms RTX 2080 Super Mobile by a small 5% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 97 | 114 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 14.51 | no data |
Power efficiency | 12.35 | 18.10 |
Architecture | Turing (2018−2022) | Turing (2018−2022) |
GPU code name | TU104 | TU104 |
Market segment | Workstation | Laptop |
Release date | 13 August 2018 (6 years ago) | 2 April 2020 (4 years ago) |
Launch price (MSRP) | $2,299 | no data |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 3072 | 3072 |
Core clock speed | 1620 MHz | 1365 MHz |
Boost clock speed | 1815 MHz | 1560 MHz |
Number of transistors | 13,600 million | 13,600 million |
Manufacturing process technology | 12 nm | 12 nm |
Power consumption (TDP) | 230 Watt | 150 Watt |
Texture fill rate | 348.5 | 299.5 |
Floating-point processing power | 11.15 TFLOPS | 9.585 TFLOPS |
ROPs | 64 | 64 |
TMUs | 192 | 192 |
Tensor Cores | 384 | 384 |
Ray Tracing Cores | 48 | 48 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | no data | large |
Interface | PCIe 3.0 x16 | PCIe 3.0 x16 |
Length | 267 mm | no data |
Width | 2-slot | no data |
Supplementary power connectors | 1x 6-pin + 1x 8-pin | no data |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR6 | GDDR6 |
Maximum RAM amount | 16 GB | 8 GB |
Memory bus width | 256 Bit | 256 Bit |
Memory clock speed | 1750 MHz | 1750 MHz |
Memory bandwidth | 448.0 GB/s | 448.0 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | 4x DisplayPort, 1x USB Type-C | No outputs |
G-SYNC support | - | + |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
VR Ready | no data | + |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 Ultimate (12_1) | 12 Ultimate (12_2) |
Shader Model | 6.5 | 6.5 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 1.2 |
Vulkan | 1.2.131 | 1.2.140 |
CUDA | 7.5 | 7.5 |
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 140−150
+2.9%
| 136
−2.9%
|
1440p | 95−100
+1.1%
| 94
−1.1%
|
4K | 70−75
+4.5%
| 67
−4.5%
|
Cost per frame, $
1080p | 16.42 | no data |
1440p | 24.20 | no data |
4K | 32.84 | no data |
FPS performance in popular games
Full HD
Low Preset
Counter-Strike 2 | 80−85
+0%
|
80−85
+0%
|
Cyberpunk 2077 | 80−85
+0%
|
80−85
+0%
|
Elden Ring | 130−140
+0%
|
130−140
+0%
|
Full HD
Medium Preset
Battlefield 5 | 104
+0%
|
104
+0%
|
Counter-Strike 2 | 80−85
+0%
|
80−85
+0%
|
Cyberpunk 2077 | 80−85
+0%
|
80−85
+0%
|
Forza Horizon 4 | 265
+0%
|
265
+0%
|
Metro Exodus | 116
+0%
|
116
+0%
|
Red Dead Redemption 2 | 121
+0%
|
121
+0%
|
Valorant | 216
+0%
|
216
+0%
|
Full HD
High Preset
Battlefield 5 | 100−110
+0%
|
100−110
+0%
|
Counter-Strike 2 | 80−85
+0%
|
80−85
+0%
|
Cyberpunk 2077 | 80−85
+0%
|
80−85
+0%
|
Dota 2 | 142
+0%
|
142
+0%
|
Elden Ring | 130−140
+0%
|
130−140
+0%
|
Far Cry 5 | 96
+0%
|
96
+0%
|
Fortnite | 170−180
+0%
|
170−180
+0%
|
Forza Horizon 4 | 217
+0%
|
217
+0%
|
Grand Theft Auto V | 136
+0%
|
136
+0%
|
Metro Exodus | 92
+0%
|
92
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 200−210
+0%
|
200−210
+0%
|
Red Dead Redemption 2 | 66
+0%
|
66
+0%
|
The Witcher 3: Wild Hunt | 140−150
+0%
|
140−150
+0%
|
Valorant | 127
+0%
|
127
+0%
|
World of Tanks | 270−280
+0%
|
270−280
+0%
|
Full HD
Ultra Preset
Battlefield 5 | 80
+0%
|
80
+0%
|
Counter-Strike 2 | 80−85
+0%
|
80−85
+0%
|
Cyberpunk 2077 | 80−85
+0%
|
80−85
+0%
|
Dota 2 | 141
+0%
|
141
+0%
|
Far Cry 5 | 95−100
+0%
|
95−100
+0%
|
Forza Horizon 4 | 183
+0%
|
183
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 200−210
+0%
|
200−210
+0%
|
Valorant | 205
+0%
|
205
+0%
|
1440p
High Preset
Dota 2 | 90
+0%
|
90
+0%
|
Elden Ring | 80−85
+0%
|
80−85
+0%
|
Grand Theft Auto V | 90
+0%
|
90
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+0%
|
170−180
+0%
|
Red Dead Redemption 2 | 43
+0%
|
43
+0%
|
World of Tanks | 250−260
+0%
|
250−260
+0%
|
1440p
Ultra Preset
Battlefield 5 | 78
+0%
|
78
+0%
|
Counter-Strike 2 | 40−45
+0%
|
40−45
+0%
|
Cyberpunk 2077 | 40−45
+0%
|
40−45
+0%
|
Far Cry 5 | 120−130
+0%
|
120−130
+0%
|
Forza Horizon 4 | 137
+0%
|
137
+0%
|
Metro Exodus | 90
+0%
|
90
+0%
|
The Witcher 3: Wild Hunt | 65−70
+0%
|
65−70
+0%
|
Valorant | 162
+0%
|
162
+0%
|
4K
High Preset
Counter-Strike 2 | 40−45
+0%
|
40−45
+0%
|
Dota 2 | 97
+0%
|
97
+0%
|
Elden Ring | 35−40
+0%
|
35−40
+0%
|
Grand Theft Auto V | 97
+0%
|
97
+0%
|
Metro Exodus | 35
+0%
|
35
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 120−130
+0%
|
120−130
+0%
|
Red Dead Redemption 2 | 28
+0%
|
28
+0%
|
The Witcher 3: Wild Hunt | 97
+0%
|
97
+0%
|
4K
Ultra Preset
Battlefield 5 | 48
+0%
|
48
+0%
|
Counter-Strike 2 | 40−45
+0%
|
40−45
+0%
|
Cyberpunk 2077 | 16−18
+0%
|
16−18
+0%
|
Dota 2 | 141
+0%
|
141
+0%
|
Far Cry 5 | 55−60
+0%
|
55−60
+0%
|
Fortnite | 55−60
+0%
|
55−60
+0%
|
Forza Horizon 4 | 78
+0%
|
78
+0%
|
Valorant | 89
+0%
|
89
+0%
|
This is how RTX 5000 and RTX 2080 Super Mobile compete in popular games:
- RTX 5000 is 3% faster in 1080p
- RTX 5000 is 1% faster in 1440p
- RTX 5000 is 4% faster in 4K
All in all, in popular games:
- there's a draw in 63 tests (100%)
Pros & cons summary
Performance score | 41.23 | 39.45 |
Recency | 13 August 2018 | 2 April 2020 |
Maximum RAM amount | 16 GB | 8 GB |
Power consumption (TDP) | 230 Watt | 150 Watt |
RTX 5000 has a 4.5% higher aggregate performance score, and a 100% higher maximum VRAM amount.
RTX 2080 Super Mobile, on the other hand, has an age advantage of 1 year, and 53.3% lower power consumption.
Given the minimal performance differences, no clear winner can be declared between Quadro RTX 5000 and GeForce RTX 2080 Super Mobile.
Be aware that Quadro RTX 5000 is a workstation card while GeForce RTX 2080 Super Mobile is a notebook one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Other comparisons
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.