GeForce 840M vs Quadro RTX 4000 Mobile
Aggregate performance score
We've compared Quadro RTX 4000 Mobile with GeForce 840M, including specs and performance data.
RTX 4000 Mobile outperforms 840M by a whopping 1108% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 152 | 793 |
Place by popularity | not in top-100 | not in top-100 |
Power efficiency | 21.68 | 5.98 |
Architecture | Turing (2018−2022) | Maxwell (2014−2017) |
GPU code name | TU104 | GM108 |
Market segment | Mobile workstation | Laptop |
Release date | 27 May 2019 (5 years ago) | 12 March 2014 (10 years ago) |
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 2560 | 384 |
Core clock speed | 1110 MHz | 1029 MHz |
Boost clock speed | 1560 MHz | 1124 MHz |
Number of transistors | 13,600 million | no data |
Manufacturing process technology | 12 nm | 28 nm |
Power consumption (TDP) | 110 Watt | 33 Watt |
Texture fill rate | 249.6 | 17.98 |
Floating-point processing power | 7.987 TFLOPS | 0.8632 TFLOPS |
ROPs | 64 | 8 |
TMUs | 160 | 16 |
Tensor Cores | 320 | no data |
Ray Tracing Cores | 40 | no data |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | large | medium sized |
Bus support | no data | PCI Express 2.0, PCI Express 3.0 |
Interface | PCIe 3.0 x16 | PCIe 3.0 x8 |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR6 | DDR3 |
Maximum RAM amount | 8 GB | 4 GB |
Memory bus width | 256 Bit | 64 Bit |
Memory clock speed | 1750 MHz | 1001 MHz |
Memory bandwidth | 448.0 GB/s | 16.02 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | No outputs | No outputs |
G-SYNC support | + | - |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
GPU Boost | no data | 2.0 |
Optimus | - | + |
GameWorks | - | + |
VR Ready | + | no data |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 Ultimate (12_1) | 12 (11_0) |
Shader Model | 6.5 | 5.1 |
OpenGL | 4.6 | 4.5 |
OpenCL | 1.2 | 1.2 |
Vulkan | 1.2.131 | 1.1.126 |
CUDA | 7.5 | + |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
3DMark 11 Performance GPU
3DMark 11 is an obsolete DirectX 11 benchmark by Futuremark. It used four tests based on two scenes, one being few submarines exploring the submerged wreck of a sunken ship, the other is an abandoned temple deep in the jungle. All the tests are heavy with volumetric lighting and tessellation, and despite being done in 1280x720 resolution, are relatively taxing. Discontinued in January 2020, 3DMark 11 is now superseded by Time Spy.
3DMark Vantage Performance
3DMark Vantage is an outdated DirectX 10 benchmark using 1280x1024 screen resolution. It taxes the graphics card with two scenes, one depicting a girl escaping some militarized base located within a sea cave, the other displaying a space fleet attack on a defenseless planet. It was discontinued in April 2017, and Time Spy benchmark is now recommended to be used instead.
3DMark Fire Strike Graphics
Fire Strike is a DirectX 11 benchmark for gaming PCs. It features two separate tests displaying a fight between a humanoid and a fiery creature made of lava. Using 1920x1080 resolution, Fire Strike shows off some realistic graphics and is quite taxing on hardware.
3DMark Cloud Gate GPU
Cloud Gate is an outdated DirectX 11 feature level 10 benchmark that was used for home PCs and basic notebooks. It displays a few scenes of some weird space teleportation device launching spaceships into unknown, using fixed resolution of 1280x720. Just like Ice Storm benchmark, it has been discontinued in January 2020 and replaced by 3DMark Night Raid.
3DMark Ice Storm GPU
Ice Storm Graphics is an obsolete benchmark, part of 3DMark suite. Ice Storm was used to measure entry level laptops and Windows-based tablets performance. It utilizes DirectX 11 feature level 9 to display a battle between two space fleets near a frozen planet in 1280x720 resolution. Discontinued in January 2020, it is now superseded by 3DMark Night Raid.
SPECviewperf 12 - Showcase
SPECviewperf 12 - Maya
This part of SPECviewperf 12 workstation benchmark uses Autodesk Maya 13 engine to render a superhero energy plant static scene consisting of more than 700 thousand polygons, in six different modes.
SPECviewperf 12 - Catia
SPECviewperf 12 - Solidworks
SPECviewperf 12 - Siemens NX
SPECviewperf 12 - Creo
SPECviewperf 12 - Medical
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
900p | 500−550
+1011%
| 45
−1011%
|
Full HD | 110
+511%
| 18
−511%
|
1440p | 65
+1200%
| 5−6
−1200%
|
4K | 48
+1500%
| 3−4
−1500%
|
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 55−60
+1000%
|
5−6
−1000%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 87
+867%
|
9−10
−867%
|
Assassin's Creed Valhalla | 55−60
+5500%
|
1−2
−5500%
|
Battlefield 5 | 100−110
+2525%
|
4−5
−2525%
|
Call of Duty: Modern Warfare | 65−70
+843%
|
7−8
−843%
|
Cyberpunk 2077 | 55−60
+1000%
|
5−6
−1000%
|
Far Cry 5 | 70−75
+1340%
|
5−6
−1340%
|
Far Cry New Dawn | 125
+1463%
|
8−9
−1463%
|
Forza Horizon 4 | 170−180
+1047%
|
14−16
−1047%
|
Hitman 3 | 65−70
+750%
|
8−9
−750%
|
Horizon Zero Dawn | 140−150
+541%
|
21−24
−541%
|
Metro Exodus | 100−110
+3500%
|
3−4
−3500%
|
Red Dead Redemption 2 | 80−85
+1043%
|
7−8
−1043%
|
Shadow of the Tomb Raider | 180
+1400%
|
12−14
−1400%
|
Watch Dogs: Legion | 110−120
+211%
|
35−40
−211%
|
Full HD
High Preset
Assassin's Creed Odyssey | 65−70
+667%
|
9−10
−667%
|
Assassin's Creed Valhalla | 55−60
+5500%
|
1−2
−5500%
|
Battlefield 5 | 100−110
+2525%
|
4−5
−2525%
|
Call of Duty: Modern Warfare | 65−70
+843%
|
7−8
−843%
|
Cyberpunk 2077 | 55−60
+1000%
|
5−6
−1000%
|
Far Cry 5 | 70−75
+1340%
|
5−6
−1340%
|
Far Cry New Dawn | 90
+1025%
|
8−9
−1025%
|
Forza Horizon 4 | 170−180
+1047%
|
14−16
−1047%
|
Hitman 3 | 65−70
+750%
|
8−9
−750%
|
Horizon Zero Dawn | 140−150
+541%
|
21−24
−541%
|
Metro Exodus | 100−110
+3500%
|
3−4
−3500%
|
Red Dead Redemption 2 | 80−85
+1043%
|
7−8
−1043%
|
Shadow of the Tomb Raider | 110−120
+850%
|
12−14
−850%
|
The Witcher 3: Wild Hunt | 65−70
+196%
|
23
−196%
|
Watch Dogs: Legion | 110−120
+211%
|
35−40
−211%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 54
+500%
|
9−10
−500%
|
Assassin's Creed Valhalla | 55−60
+5500%
|
1−2
−5500%
|
Call of Duty: Modern Warfare | 65−70
+843%
|
7−8
−843%
|
Cyberpunk 2077 | 55−60
+1000%
|
5−6
−1000%
|
Far Cry 5 | 70−75
+1340%
|
5−6
−1340%
|
Forza Horizon 4 | 170−180
+1047%
|
14−16
−1047%
|
Hitman 3 | 65−70
+750%
|
8−9
−750%
|
Horizon Zero Dawn | 121
+450%
|
21−24
−450%
|
Shadow of the Tomb Raider | 110−120
+850%
|
12−14
−850%
|
The Witcher 3: Wild Hunt | 75
+1150%
|
6
−1150%
|
Watch Dogs: Legion | 110−120
+211%
|
35−40
−211%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 80−85
+1043%
|
7−8
−1043%
|
1440p
High Preset
Battlefield 5 | 60−65
+1120%
|
5−6
−1120%
|
Far Cry New Dawn | 60
+1400%
|
4−5
−1400%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 41
+1950%
|
2−3
−1950%
|
Assassin's Creed Valhalla | 30−35
+1600%
|
2−3
−1600%
|
Call of Duty: Modern Warfare | 35−40
+1800%
|
2−3
−1800%
|
Cyberpunk 2077 | 21−24
+2200%
|
1−2
−2200%
|
Far Cry 5 | 35−40
+1133%
|
3−4
−1133%
|
Forza Horizon 4 | 180−190
+1229%
|
14−16
−1229%
|
Hitman 3 | 40−45
+400%
|
8−9
−400%
|
Horizon Zero Dawn | 89
+1171%
|
7−8
−1171%
|
Metro Exodus | 77
+1183%
|
6−7
−1183%
|
Shadow of the Tomb Raider | 75−80
+1150%
|
6−7
−1150%
|
The Witcher 3: Wild Hunt | 40−45
+2100%
|
2−3
−2100%
|
Watch Dogs: Legion | 170−180
+900%
|
16−18
−900%
|
1440p
Epic Preset
Red Dead Redemption 2 | 55−60
+817%
|
6−7
−817%
|
4K
High Preset
Battlefield 5 | 30−35
+3100%
|
1−2
−3100%
|
Far Cry New Dawn | 33
+1550%
|
2−3
−1550%
|
Hitman 3 | 24−27
+1200%
|
2−3
−1200%
|
Horizon Zero Dawn | 150−160
+1225%
|
12−14
−1225%
|
Metro Exodus | 35−40
+1200%
|
3−4
−1200%
|
The Witcher 3: Wild Hunt | 51
+1175%
|
4−5
−1175%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 28
+1300%
|
2−3
−1300%
|
Assassin's Creed Valhalla | 18−20
+1800%
|
1−2
−1800%
|
Call of Duty: Modern Warfare | 20−22
+1900%
|
1−2
−1900%
|
Cyberpunk 2077 | 9−10 | 0−1 |
Far Cry 5 | 18−20
+1700%
|
1−2
−1700%
|
Forza Horizon 4 | 40−45 | 0−1 |
Shadow of the Tomb Raider | 40−45
+1300%
|
3−4
−1300%
|
Watch Dogs: Legion | 14−16
+1400%
|
1−2
−1400%
|
4K
Epic Preset
Red Dead Redemption 2 | 27−30
+600%
|
4−5
−600%
|
This is how RTX 4000 Mobile and GeForce 840M compete in popular games:
- RTX 4000 Mobile is 1011% faster in 900p
- RTX 4000 Mobile is 511% faster in 1080p
- RTX 4000 Mobile is 1200% faster in 1440p
- RTX 4000 Mobile is 1500% faster in 4K
Here's the range of performance differences observed across popular games:
- in Assassin's Creed Valhalla, with 1080p resolution and the Medium Preset, the RTX 4000 Mobile is 5500% faster.
All in all, in popular games:
- Without exception, RTX 4000 Mobile surpassed GeForce 840M in all 61 of our tests.
Pros & cons summary
Performance score | 34.20 | 2.83 |
Recency | 27 May 2019 | 12 March 2014 |
Maximum RAM amount | 8 GB | 4 GB |
Chip lithography | 12 nm | 28 nm |
Power consumption (TDP) | 110 Watt | 33 Watt |
RTX 4000 Mobile has a 1108.5% higher aggregate performance score, an age advantage of 5 years, a 100% higher maximum VRAM amount, and a 133.3% more advanced lithography process.
GeForce 840M, on the other hand, has 233.3% lower power consumption.
The Quadro RTX 4000 Mobile is our recommended choice as it beats the GeForce 840M in performance tests.
Be aware that Quadro RTX 4000 Mobile is a mobile workstation card while GeForce 840M is a mobile workstation one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.