GeForce MX350 vs Quadro P3200 Max-Q

Aggregate performance score

We've compared Quadro P3200 Max-Q with GeForce MX350, including specs and performance data.

P3200 Max-Q
2018
6 GB GDDR5, 75 Watt
23.62
+223%

P3200 Max-Q outperforms MX350 by a whopping 223% based on our aggregate benchmark results.

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking248549
Place by popularitynot in top-100not in top-100
Power efficiency21.5925.06
ArchitecturePascal (2016−2021)Pascal (2016−2021)
GPU code nameGP104GP107
Market segmentMobile workstationLaptop
Release date21 February 2018 (7 years ago)10 February 2020 (5 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores1792640
Core clock speed1139 MHz747 MHz
Boost clock speed1404 MHz937 MHz
Number of transistors7,200 million3,300 million
Manufacturing process technology16 nm14 nm
Power consumption (TDP)75 Watt20 Watt
Texture fill rate157.229.98
Floating-point processing power5.032 TFLOPS1.199 TFLOPS
ROPs6416
TMUs11232

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfaceMXM-B (3.0)PCIe 3.0 x16
Supplementary power connectorsNoneNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR5GDDR5
Maximum RAM amount6 GB2 GB
Memory bus width192 Bit64 Bit
Memory clock speed1753 MHz1752 MHz
Memory bandwidth168.3 GB/s56.06 GB/s
Shared memory--

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputsNo outputs

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

Optimus-+

API and SDK compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_1)12 (12_1)
Shader Model6.46.4
OpenGL4.64.6
OpenCL1.21.2
Vulkan1.2.1311.2.131
CUDA6.16.1

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.


Combined synthetic benchmark score

This is our combined benchmark score.

P3200 Max-Q 23.62
+223%
GeForce MX350 7.31

Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

P3200 Max-Q 9077
+223%
GeForce MX350 2809

Gaming performance

Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.

Average FPS across all PC games

Here are the average frames per second in a large set of popular games across different resolutions:

Full HD85−90
+215%
27
−215%
1440p100−110
+223%
31
−223%
4K80−85
+208%
26
−208%

FPS performance in popular games

Full HD
Low Preset

Atomic Heart 31
+0%
31
+0%
Counter-Strike 2 14
+0%
14
+0%
Cyberpunk 2077 16
+0%
16
+0%

Full HD
Medium Preset

Atomic Heart 24
+0%
24
+0%
Battlefield 5 37
+0%
37
+0%
Counter-Strike 2 11
+0%
11
+0%
Cyberpunk 2077 11
+0%
11
+0%
Far Cry 5 27
+0%
27
+0%
Fortnite 82
+0%
82
+0%
Forza Horizon 4 37
+0%
37
+0%
Forza Horizon 5 21
+0%
21
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 24−27
+0%
24−27
+0%
Valorant 129
+0%
129
+0%

Full HD
High Preset

Atomic Heart 7
+0%
7
+0%
Battlefield 5 30
+0%
30
+0%
Counter-Strike 2 14−16
+0%
14−16
+0%
Counter-Strike: Global Offensive 120
+0%
120
+0%
Cyberpunk 2077 6
+0%
6
+0%
Dota 2 83
+0%
83
+0%
Far Cry 5 23
+0%
23
+0%
Fortnite 43
+0%
43
+0%
Forza Horizon 4 26
+0%
26
+0%
Forza Horizon 5 16−18
+0%
16−18
+0%
Grand Theft Auto V 35
+0%
35
+0%
Metro Exodus 12
+0%
12
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 24−27
+0%
24−27
+0%
The Witcher 3: Wild Hunt 27
+0%
27
+0%
Valorant 116
+0%
116
+0%

Full HD
Ultra Preset

Battlefield 5 24
+0%
24
+0%
Counter-Strike 2 14−16
+0%
14−16
+0%
Cyberpunk 2077 5
+0%
5
+0%
Dota 2 76
+0%
76
+0%
Far Cry 5 21
+0%
21
+0%
Forza Horizon 4 19
+0%
19
+0%
Forza Horizon 5 16−18
+0%
16−18
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 24−27
+0%
24−27
+0%
The Witcher 3: Wild Hunt 16
+0%
16
+0%
Valorant 70−75
+0%
70−75
+0%

Full HD
Epic Preset

Fortnite 27
+0%
27
+0%

1440p
High Preset

Counter-Strike: Global Offensive 50−55
+0%
50−55
+0%
Grand Theft Auto V 9−10
+0%
9−10
+0%
Metro Exodus 7−8
+0%
7−8
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 35−40
+0%
35−40
+0%
Valorant 75−80
+0%
75−80
+0%

1440p
Ultra Preset

Battlefield 5 12−14
+0%
12−14
+0%
Counter-Strike 2 9−10
+0%
9−10
+0%
Cyberpunk 2077 5−6
+0%
5−6
+0%
Far Cry 5 14−16
+0%
14−16
+0%
Forza Horizon 4 16−18
+0%
16−18
+0%
Forza Horizon 5 10−12
+0%
10−12
+0%
The Witcher 3: Wild Hunt 10−12
+0%
10−12
+0%

1440p
Epic Preset

Fortnite 14−16
+0%
14−16
+0%

4K
High Preset

Atomic Heart 5−6
+0%
5−6
+0%
Counter-Strike 2 1−2
+0%
1−2
+0%
Grand Theft Auto V 18−20
+0%
18−20
+0%
Metro Exodus 2−3
+0%
2−3
+0%
The Witcher 3: Wild Hunt 5−6
+0%
5−6
+0%
Valorant 35−40
+0%
35−40
+0%

4K
Ultra Preset

Battlefield 5 6−7
+0%
6−7
+0%
Counter-Strike 2 1−2
+0%
1−2
+0%
Cyberpunk 2077 2−3
+0%
2−3
+0%
Dota 2 30
+0%
30
+0%
Far Cry 5 7−8
+0%
7−8
+0%
Forza Horizon 4 10−12
+0%
10−12
+0%
Forza Horizon 5 4−5
+0%
4−5
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 7−8
+0%
7−8
+0%

4K
Epic Preset

Fortnite 7−8
+0%
7−8
+0%

This is how P3200 Max-Q and GeForce MX350 compete in popular games:

  • P3200 Max-Q is 215% faster in 1080p
  • P3200 Max-Q is 223% faster in 1440p
  • P3200 Max-Q is 208% faster in 4K

All in all, in popular games:

  • there's a draw in 67 tests (100%)

Pros & cons summary


Performance score 23.62 7.31
Recency 21 February 2018 10 February 2020
Maximum RAM amount 6 GB 2 GB
Chip lithography 16 nm 14 nm
Power consumption (TDP) 75 Watt 20 Watt

P3200 Max-Q has a 223.1% higher aggregate performance score, and a 200% higher maximum VRAM amount.

GeForce MX350, on the other hand, has an age advantage of 1 year, a 14.3% more advanced lithography process, and 275% lower power consumption.

The Quadro P3200 Max-Q is our recommended choice as it beats the GeForce MX350 in performance tests.

Be aware that Quadro P3200 Max-Q is a mobile workstation card while GeForce MX350 is a mobile workstation one.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA Quadro P3200 Max-Q
Quadro P3200 Max-Q
NVIDIA GeForce MX350
GeForce MX350

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


4.7 21 vote

Rate Quadro P3200 Max-Q on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.5 1658 votes

Rate GeForce MX350 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can give us your opinion about Quadro P3200 Max-Q or GeForce MX350, agree or disagree with our ratings, or report errors or inaccuracies on the site.