GeForce GT 640M LE vs Quadro K3100M
Aggregate performance score
We've compared Quadro K3100M with GeForce GT 640M LE, including specs and performance data.
K3100M outperforms GT 640M LE by a whopping 219% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 590 | 914 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 0.23 | 0.04 |
Power efficiency | 5.41 | 3.97 |
Architecture | Kepler (2012−2018) | Fermi (2010−2014) |
GPU code name | GK104 | GF108 |
Market segment | Mobile workstation | Laptop |
Release date | 23 July 2013 (11 years ago) | 4 May 2012 (12 years ago) |
Launch price (MSRP) | $1,999 | $849.99 |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
K3100M has 475% better value for money than GT 640M LE.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 768 | Up to 384 |
Core clock speed | 706 MHz | Up to 500 MHz |
Number of transistors | 3,540 million | 585 million |
Manufacturing process technology | 28 nm | 40 nm |
Power consumption (TDP) | 75 Watt | 20 Watt |
Texture fill rate | 45.18 | 12.05 |
Floating-point processing power | 1.084 TFLOPS | 0.289 TFLOPS |
ROPs | 32 | 4 |
TMUs | 64 | 16 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | large | medium sized |
Bus support | no data | PCI Express 2.0, PCI Express 3.0 |
Interface | MXM-B (3.0) | PCIe 2.0 x16 |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR5 | DDR3\DDR5 |
Maximum RAM amount | 4 GB | 2 GB |
Memory bus width | 256 Bit | 128bit |
Memory clock speed | 800 MHz | 785 MHz |
Memory bandwidth | 102.4 GB/s | Up to 28.8 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | No outputs | No outputs |
HDMI | - | + |
HDCP | - | + |
Maximum VGA resolution | no data | Up to 2048x1536 |
Display Port | 1.2 | no data |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
3D Blu-Ray | - | + |
Optimus | + | + |
3D Vision Pro | + | no data |
Mosaic | + | no data |
nView Display Management | + | no data |
Optimus | + | no data |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 | 12 API |
Shader Model | 5.1 | 5.1 |
OpenGL | 4.5 | 4.5 |
OpenCL | 1.2 | 1.1 |
Vulkan | + | N/A |
CUDA | + | + |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Passmark
This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.
3DMark 11 Performance GPU
3DMark 11 is an obsolete DirectX 11 benchmark by Futuremark. It used four tests based on two scenes, one being few submarines exploring the submerged wreck of a sunken ship, the other is an abandoned temple deep in the jungle. All the tests are heavy with volumetric lighting and tessellation, and despite being done in 1280x720 resolution, are relatively taxing. Discontinued in January 2020, 3DMark 11 is now superseded by Time Spy.
3DMark Vantage Performance
3DMark Vantage is an outdated DirectX 10 benchmark using 1280x1024 screen resolution. It taxes the graphics card with two scenes, one depicting a girl escaping some militarized base located within a sea cave, the other displaying a space fleet attack on a defenseless planet. It was discontinued in April 2017, and Time Spy benchmark is now recommended to be used instead.
GeekBench 5 OpenCL
Geekbench 5 is a widespread graphics card benchmark combined from 11 different test scenarios. All these scenarios rely on direct usage of GPU's processing power, no 3D rendering is involved. This variation uses OpenCL API by Khronos Group.
GeekBench 5 Vulkan
Geekbench 5 is a widespread graphics card benchmark combined from 11 different test scenarios. All these scenarios rely on direct usage of GPU's processing power, no 3D rendering is involved. This variation uses Vulkan API by AMD & Khronos Group.
Octane Render OctaneBench
This is a special benchmark measuring graphics card performance in OctaneRender, which is a realistic GPU rendering engine by OTOY Inc., available either as a standalone program, or as a plugin for 3DS Max, Cinema 4D and many other apps. It renders four different static scenes, then compares render times with a reference GPU which is currently GeForce GTX 980. This benchmark has nothing to do with gaming and is aimed at professional 3D graphics artists.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
900p | 60−65
+216%
| 19
−216%
|
Full HD | 32
+68.4%
| 19
−68.4%
|
4K | 15
+275%
| 4−5
−275%
|
Cost per frame, $
1080p | 62.47 | 44.74 |
4K | 133.27 | 212.50 |
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 10−11
+150%
|
4−5
−150%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 14−16
+114%
|
7−8
−114%
|
Assassin's Creed Valhalla | 7−8
+250%
|
2−3
−250%
|
Battlefield 5 | 16−18
+1500%
|
1−2
−1500%
|
Call of Duty: Modern Warfare | 12−14
+140%
|
5−6
−140%
|
Cyberpunk 2077 | 10−11
+150%
|
4−5
−150%
|
Far Cry 5 | 12−14
+333%
|
3−4
−333%
|
Far Cry New Dawn | 16−18
+220%
|
5−6
−220%
|
Forza Horizon 4 | 35−40
+443%
|
7−8
−443%
|
Hitman 3 | 12−14
+100%
|
6−7
−100%
|
Horizon Zero Dawn | 35−40
+112%
|
16−18
−112%
|
Metro Exodus | 14−16
+275%
|
4−5
−275%
|
Red Dead Redemption 2 | 16−18
+300%
|
4−5
−300%
|
Shadow of the Tomb Raider | 20−22
+122%
|
9−10
−122%
|
Watch Dogs: Legion | 45−50
+40%
|
35−40
−40%
|
Full HD
High Preset
Assassin's Creed Odyssey | 14−16
+114%
|
7−8
−114%
|
Assassin's Creed Valhalla | 7−8
+250%
|
2−3
−250%
|
Battlefield 5 | 16−18
+1500%
|
1−2
−1500%
|
Call of Duty: Modern Warfare | 12−14
+140%
|
5−6
−140%
|
Cyberpunk 2077 | 10−11
+150%
|
4−5
−150%
|
Far Cry 5 | 12−14
+333%
|
3−4
−333%
|
Far Cry New Dawn | 16−18
+220%
|
5−6
−220%
|
Forza Horizon 4 | 35−40
+443%
|
7−8
−443%
|
Hitman 3 | 12−14
+100%
|
6−7
−100%
|
Horizon Zero Dawn | 35−40
+112%
|
16−18
−112%
|
Metro Exodus | 14−16
+275%
|
4−5
−275%
|
Red Dead Redemption 2 | 16−18
+300%
|
4−5
−300%
|
Shadow of the Tomb Raider | 20−22
+122%
|
9−10
−122%
|
The Witcher 3: Wild Hunt | 46
+283%
|
12−14
−283%
|
Watch Dogs: Legion | 45−50
+40%
|
35−40
−40%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 14−16
+114%
|
7−8
−114%
|
Assassin's Creed Valhalla | 7−8
+250%
|
2−3
−250%
|
Call of Duty: Modern Warfare | 12−14
+140%
|
5−6
−140%
|
Cyberpunk 2077 | 10−11
+150%
|
4−5
−150%
|
Far Cry 5 | 12−14
+333%
|
3−4
−333%
|
Forza Horizon 4 | 35−40
+443%
|
7−8
−443%
|
Hitman 3 | 12−14
+100%
|
6−7
−100%
|
Horizon Zero Dawn | 35−40
+112%
|
16−18
−112%
|
Shadow of the Tomb Raider | 20−22
+122%
|
9−10
−122%
|
The Witcher 3: Wild Hunt | 7
−71.4%
|
12−14
+71.4%
|
Watch Dogs: Legion | 45−50
+40%
|
35−40
−40%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 16−18
+300%
|
4−5
−300%
|
1440p
High Preset
Battlefield 5 | 10−12
+450%
|
2−3
−450%
|
Far Cry New Dawn | 9−10
+200%
|
3−4
−200%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 5−6
+400%
|
1−2
−400%
|
Assassin's Creed Valhalla | 1−2 | 0−1 |
Call of Duty: Modern Warfare | 5−6
+400%
|
1−2
−400%
|
Cyberpunk 2077 | 3−4
+200%
|
1−2
−200%
|
Far Cry 5 | 7−8
+250%
|
2−3
−250%
|
Forza Horizon 4 | 16−18
+240%
|
5−6
−240%
|
Hitman 3 | 10−11
+42.9%
|
7−8
−42.9%
|
Horizon Zero Dawn | 12−14
+160%
|
5−6
−160%
|
Metro Exodus | 4−5
+300%
|
1−2
−300%
|
Shadow of the Tomb Raider | 1−2 | 0−1 |
The Witcher 3: Wild Hunt | 5−6
+400%
|
1−2
−400%
|
Watch Dogs: Legion | 35−40
+270%
|
10−11
−270%
|
1440p
Epic Preset
Red Dead Redemption 2 | 10−11
+100%
|
5−6
−100%
|
4K
High Preset
Battlefield 5 | 5−6
+400%
|
1−2
−400%
|
Far Cry New Dawn | 4−5
+300%
|
1−2
−300%
|
Hitman 3 | 2−3 | 0−1 |
Horizon Zero Dawn | 12−14
+225%
|
4−5
−225%
|
Metro Exodus | 3−4 | 0−1 |
The Witcher 3: Wild Hunt | 5
+400%
|
1−2
−400%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 4−5
+100%
|
2−3
−100%
|
Assassin's Creed Valhalla | 2−3
+100%
|
1−2
−100%
|
Call of Duty: Modern Warfare | 2−3 | 0−1 |
Cyberpunk 2077 | 0−1 | 0−1 |
Far Cry 5 | 3−4
+200%
|
1−2
−200%
|
Forza Horizon 4 | 6−7
+500%
|
1−2
−500%
|
Watch Dogs: Legion | 2−3 | 0−1 |
4K
Epic Preset
Red Dead Redemption 2 | 6−7
+100%
|
3−4
−100%
|
This is how K3100M and GT 640M LE compete in popular games:
- K3100M is 216% faster in 900p
- K3100M is 68% faster in 1080p
- K3100M is 275% faster in 4K
Here's the range of performance differences observed across popular games:
- in Battlefield 5, with 1080p resolution and the Medium Preset, the K3100M is 1500% faster.
- in The Witcher 3: Wild Hunt, with 1080p resolution and the Ultra Preset, the GT 640M LE is 71% faster.
All in all, in popular games:
- K3100M is ahead in 52 tests (98%)
- GT 640M LE is ahead in 1 test (2%)
Pros & cons summary
Performance score | 5.87 | 1.84 |
Recency | 23 July 2013 | 4 May 2012 |
Maximum RAM amount | 4 GB | 2 GB |
Chip lithography | 28 nm | 40 nm |
Power consumption (TDP) | 75 Watt | 20 Watt |
K3100M has a 219% higher aggregate performance score, an age advantage of 1 year, a 100% higher maximum VRAM amount, and a 42.9% more advanced lithography process.
GT 640M LE, on the other hand, has 275% lower power consumption.
The Quadro K3100M is our recommended choice as it beats the GeForce GT 640M LE in performance tests.
Be aware that Quadro K3100M is a mobile workstation card while GeForce GT 640M LE is a mobile workstation one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.