Radeon HD 6320 vs NVS 5200M

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking1020not rated
Place by popularitynot in top-100not in top-100
Power efficiency3.68no data
ArchitectureFermi 2.0 (2010−2014)TeraScale 2 (2009−2015)
GPU code nameGF117Loveland
Market segmentMobile workstationDesktop
Release date1 June 2012 (12 years ago)15 August 2011 (13 years ago)
Launch price (MSRP)no data$554.99

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores9680
Core clock speed625 MHz508 MHz
Boost clock speedno data600 MHz
Number of transistors585 million450 million
Manufacturing process technology28 nm40 nm
Power consumption (TDP)25 Watt18 Watt
Texture fill rate10.004.064
Floating-point processing power0.24 TFLOPS0.08128 TFLOPS
ROPs44
TMUs168

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizemedium sizedno data
InterfaceMXMIGP
Widthno dataIGP

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeDDR3System Shared
Maximum RAM amount1 GBSystem Shared
Memory bus width64 BitSystem Shared
Memory clock speed900 MHzSystem Shared
Memory bandwidth14.4 GB/sno data
Shared memory-+

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputsNo outputs

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

Optimus+-

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (11_0)11.2 (11_0)
Shader Model5.15.0
OpenGL4.64.4
OpenCL1.11.2
VulkanN/AN/A
CUDA+-

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.



Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

NVS 5200M 512
+248%
HD 6320 147

3DMark 11 Performance GPU

3DMark 11 is an obsolete DirectX 11 benchmark by Futuremark. It used four tests based on two scenes, one being few submarines exploring the submerged wreck of a sunken ship, the other is an abandoned temple deep in the jungle. All the tests are heavy with volumetric lighting and tessellation, and despite being done in 1280x720 resolution, are relatively taxing. Discontinued in January 2020, 3DMark 11 is now superseded by Time Spy.

NVS 5200M 1008
+234%
HD 6320 302

3DMark Vantage Performance

3DMark Vantage is an outdated DirectX 10 benchmark using 1280x1024 screen resolution. It taxes the graphics card with two scenes, one depicting a girl escaping some militarized base located within a sea cave, the other displaying a space fleet attack on a defenseless planet. It was discontinued in April 2017, and Time Spy benchmark is now recommended to be used instead.

NVS 5200M 4268
+379%
HD 6320 892

Pros & cons summary


Recency 1 June 2012 15 August 2011
Chip lithography 28 nm 40 nm
Power consumption (TDP) 25 Watt 18 Watt

NVS 5200M has an age advantage of 9 months, and a 42.9% more advanced lithography process.

HD 6320, on the other hand, has 38.9% lower power consumption.

We couldn't decide between NVS 5200M and Radeon HD 6320. We've got no test results to judge.

Be aware that NVS 5200M is a mobile workstation card while Radeon HD 6320 is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA NVS 5200M
NVS 5200M
AMD Radeon HD 6320
Radeon HD 6320

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.5 143 votes

Rate NVS 5200M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3 190 votes

Rate Radeon HD 6320 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.