Radeon HD 6310 vs HD Graphics 5000

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking970not rated
Place by popularitynot in top-100not in top-100
Power efficiency3.50no data
ArchitectureGeneration 7.5 (2013)TeraScale 2 (2009−2015)
GPU code nameHaswell GT3Loveland
Market segmentLaptopLaptop
Release date27 May 2013 (11 years ago)9 November 2010 (14 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores32080
Core clock speed200 MHz276 MHz
Boost clock speed1000 MHzno data
Number of transistors1,300 million450 million
Manufacturing process technology22 nm40 nm
Power consumption (TDP)30 Watt18 Watt
Texture fill rate40.002.208
Floating-point processing power0.64 TFLOPS0.04416 TFLOPS
ROPs44
TMUs408

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfaceRing BusIGP

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeSystem SharedSystem Shared
Maximum RAM amountSystem SharedSystem Shared
Memory bus widthSystem SharedSystem Shared
Memory clock speedSystem SharedSystem Shared
Shared memory++

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsPortable Device DependentNo outputs

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

Quick Sync+no data

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (11_1)11.2 (11_0)
Shader Model5.15.0
OpenGL4.34.4
OpenCL1.21.2
Vulkan+N/A

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.



Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

HD Graphics 5000 585
+380%
HD 6310 122

3DMark 11 Performance GPU

3DMark 11 is an obsolete DirectX 11 benchmark by Futuremark. It used four tests based on two scenes, one being few submarines exploring the submerged wreck of a sunken ship, the other is an abandoned temple deep in the jungle. All the tests are heavy with volumetric lighting and tessellation, and despite being done in 1280x720 resolution, are relatively taxing. Discontinued in January 2020, 3DMark 11 is now superseded by Time Spy.

HD Graphics 5000 1034
+312%
HD 6310 251

3DMark Vantage Performance

3DMark Vantage is an outdated DirectX 10 benchmark using 1280x1024 screen resolution. It taxes the graphics card with two scenes, one depicting a girl escaping some militarized base located within a sea cave, the other displaying a space fleet attack on a defenseless planet. It was discontinued in April 2017, and Time Spy benchmark is now recommended to be used instead.

HD Graphics 5000 4277
+519%
HD 6310 691

Pros & cons summary


Recency 27 May 2013 9 November 2010
Chip lithography 22 nm 40 nm
Power consumption (TDP) 30 Watt 18 Watt

HD Graphics 5000 has an age advantage of 2 years, and a 81.8% more advanced lithography process.

HD 6310, on the other hand, has 66.7% lower power consumption.

We couldn't decide between HD Graphics 5000 and Radeon HD 6310. We've got no test results to judge.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


Intel HD Graphics 5000
HD Graphics 5000
AMD Radeon HD 6310
Radeon HD 6310

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.2 181 vote

Rate HD Graphics 5000 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.8 255 votes

Rate Radeon HD 6310 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.