Radeon R7E Mobile Graphics vs GeForce MX150

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking591not rated
Place by popularity99not in top-100
Power efficiency40.38no data
ArchitecturePascal (2016−2021)GCN 3.0 (2014−2019)
GPU code nameGP108Wani
Market segmentLaptopLaptop
Release date17 May 2017 (7 years ago)2016 (8 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores384384
Core clock speed937 MHzno data
Boost clock speed1038 MHz626 MHz
Number of transistors1,800 million1,200 million
Manufacturing process technology14 nm28 nm
Power consumption (TDP)10 Watt15 Watt
Texture fill rate24.9115.02
Floating-point processing power0.7972 TFLOPSno data
ROPs168
TMUs2424

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizelargeno data
InterfacePCIe 3.0 x16IGP
Supplementary power connectorsNoneno data

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR5System Shared
Maximum RAM amount4 GBSystem Shared
Memory bus width64 BitSystem Shared
Memory clock speed1253 MHzSystem Shared
Memory bandwidth40.1 GB/sno data
Shared memory-no data

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputsPortable Device Dependent

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_1)12 (12_0)
Shader Model6.46.5
OpenGL4.64.6
OpenCL1.22.1
Vulkan1.2.1311.2.170
CUDA6.1-

Pros & cons summary


Chip lithography 14 nm 28 nm
Power consumption (TDP) 10 Watt 15 Watt

GeForce MX150 has a 100% more advanced lithography process, and 50% lower power consumption.

We couldn't decide between GeForce MX150 and Radeon R7E Mobile Graphics. We've got no test results to judge.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA GeForce MX150
GeForce MX150
AMD Radeon R7E Mobile Graphics
Radeon R7E Mobile Graphics

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.5 1636 votes

Rate GeForce MX150 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.9 10 votes

Rate Radeon R7E Mobile Graphics on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.