GeForce GT 130 OEM vs Go 6800

#ad 
Buy on Amazon
VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot ratednot rated
Place by popularitynot in top-100not in top-100
ArchitectureCurie (2003−2013)Tesla (2006−2010)
GPU code nameNV41G94B
Market segmentLaptopDesktop
Release date8 November 2004 (19 years ago)10 March 2009 (15 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores1748
Core clock speed300 MHz500 MHz
Boost clock speed300 MHzno data
Number of transistors190 million505 million
Manufacturing process technology130 nm55 nm
Power consumption (TDP)45 Watt75 Watt
Texture fill rate3.60012.00
Floating-point processing powerno data0.12 TFLOPS
ROPs812
TMUs1224

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizelargeno data
InterfaceMXM-IIIPCIe 2.0 x16
Lengthno data229 mm
Widthno data1-slot
Supplementary power connectorsNone1x 6-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR3DDR2
Maximum RAM amount256 MB512 MB
Memory bus width256 Bit192 Bit
Memory clock speed550 MHz500 MHz
Memory bandwidth35.2 GB/s24 GB/s
Shared memory-no data

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsPortable Device Dependent2x DVI, 1x S-Video

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX9.0c (9_3)11.1 (10_0)
Shader Model3.04.0
OpenGL2.0 (full) 2.1 (partial)3.3
OpenCLN/A1.1
VulkanN/AN/A
CUDA-1.1

Pros & cons summary


Recency 8 November 2004 10 March 2009
Maximum RAM amount 256 MB 512 MB
Chip lithography 130 nm 55 nm
Power consumption (TDP) 45 Watt 75 Watt

Go 6800 has 66.7% lower power consumption.

GT 130 OEM, on the other hand, has an age advantage of 4 years, a 100% higher maximum VRAM amount, and a 136.4% more advanced lithography process.

We couldn't decide between GeForce Go 6800 and GeForce GT 130 OEM. We've got no test results to judge.

Be aware that GeForce Go 6800 is a notebook card while GeForce GT 130 OEM is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA GeForce Go 6800
GeForce Go 6800
NVIDIA GeForce GT 130 OEM
GeForce GT 130 OEM

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


5 2 votes

Rate GeForce Go 6800 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.3 15 votes

Rate GeForce GT 130 OEM on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.