GeForce MX110 vs GTX 780 Rev. 2
Aggregate performance score
We've compared GeForce GTX 780 Rev. 2 with GeForce MX110, including specs and performance data.
GTX 780 Rev. 2 outperforms MX110 by a whopping 187% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 430 | 710 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 1.27 | no data |
Power efficiency | 2.95 | 8.56 |
Architecture | Kepler (2012−2018) | Maxwell (2014−2017) |
GPU code name | GK110B | GM108S |
Market segment | Desktop | Laptop |
Release date | 10 September 2013 (11 years ago) | 17 November 2017 (7 years ago) |
Launch price (MSRP) | $649 | no data |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 2304 | 256 |
Core clock speed | 863 MHz | 978 MHz |
Boost clock speed | 902 MHz | 1006 MHz |
Number of transistors | 7,080 million | 1,020 million |
Manufacturing process technology | 28 nm | 28 nm |
Power consumption (TDP) | 250 Watt | 30 Watt |
Texture fill rate | 173.2 | 16.10 |
Floating-point processing power | 4.156 TFLOPS | 0.5151 TFLOPS |
ROPs | 48 | 8 |
TMUs | 192 | 16 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Interface | PCIe 3.0 x16 | PCIe 3.0 x4 |
Length | 267 mm | no data |
Width | 2-slot | no data |
Supplementary power connectors | 1x 6-pin + 1x 8-pin | None |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR5 | GDDR5 |
Maximum RAM amount | 3 GB | 2 GB |
Memory bus width | 384 Bit | 64 Bit |
Memory clock speed | 1502 MHz | 1253 MHz |
Memory bandwidth | 288.4 GB/s | 40.1 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | 2x DVI, 1x HDMI, 1x DisplayPort | Portable Device Dependent |
HDMI | + | - |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
Optimus | - | + |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12 (11_1) | 12 (11_0) |
Shader Model | 5.1 | 6.7 (5.1) |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 3.0 |
Vulkan | 1.1.126 | 1.3 |
CUDA | 3.5 | + |
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 45−50
+165%
| 17
−165%
|
Cost per frame, $
1080p | 14.42 | no data |
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 7−8
+0%
|
7−8
+0%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 9
+0%
|
9
+0%
|
Assassin's Creed Valhalla | 3−4
+0%
|
3−4
+0%
|
Battlefield 5 | 8−9
+0%
|
8−9
+0%
|
Call of Duty: Modern Warfare | 8
+0%
|
8
+0%
|
Cyberpunk 2077 | 7−8
+0%
|
7−8
+0%
|
Far Cry 5 | 10
+0%
|
10
+0%
|
Far Cry New Dawn | 10−11
+0%
|
10−11
+0%
|
Forza Horizon 4 | 21−24
+0%
|
21−24
+0%
|
Hitman 3 | 9−10
+0%
|
9−10
+0%
|
Horizon Zero Dawn | 24−27
+0%
|
24−27
+0%
|
Metro Exodus | 13
+0%
|
13
+0%
|
Red Dead Redemption 2 | 13
+0%
|
13
+0%
|
Shadow of the Tomb Raider | 16
+0%
|
16
+0%
|
Watch Dogs: Legion | 40−45
+0%
|
40−45
+0%
|
Full HD
High Preset
Assassin's Creed Odyssey | 12
+0%
|
12
+0%
|
Assassin's Creed Valhalla | 3−4
+0%
|
3−4
+0%
|
Battlefield 5 | 8−9
+0%
|
8−9
+0%
|
Call of Duty: Modern Warfare | 8−9
+0%
|
8−9
+0%
|
Cyberpunk 2077 | 7−8
+0%
|
7−8
+0%
|
Far Cry 5 | 8
+0%
|
8
+0%
|
Far Cry New Dawn | 10−11
+0%
|
10−11
+0%
|
Forza Horizon 4 | 21−24
+0%
|
21−24
+0%
|
Hitman 3 | 9−10
+0%
|
9−10
+0%
|
Horizon Zero Dawn | 24−27
+0%
|
24−27
+0%
|
Metro Exodus | 5
+0%
|
5
+0%
|
Red Dead Redemption 2 | 9−10
+0%
|
9−10
+0%
|
Shadow of the Tomb Raider | 14−16
+0%
|
14−16
+0%
|
The Witcher 3: Wild Hunt | 14−16
+0%
|
14−16
+0%
|
Watch Dogs: Legion | 40−45
+0%
|
40−45
+0%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 10−12
+0%
|
10−12
+0%
|
Assassin's Creed Valhalla | 3−4
+0%
|
3−4
+0%
|
Call of Duty: Modern Warfare | 8−9
+0%
|
8−9
+0%
|
Cyberpunk 2077 | 7−8
+0%
|
7−8
+0%
|
Far Cry 5 | 6
+0%
|
6
+0%
|
Forza Horizon 4 | 21−24
+0%
|
21−24
+0%
|
Hitman 3 | 9−10
+0%
|
9−10
+0%
|
Horizon Zero Dawn | 24−27
+0%
|
24−27
+0%
|
Shadow of the Tomb Raider | 14−16
+0%
|
14−16
+0%
|
The Witcher 3: Wild Hunt | 5
+0%
|
5
+0%
|
Watch Dogs: Legion | 40−45
+0%
|
40−45
+0%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 9−10
+0%
|
9−10
+0%
|
1440p
High Preset
Battlefield 5 | 7−8
+0%
|
7−8
+0%
|
Far Cry New Dawn | 6−7
+0%
|
6−7
+0%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 3−4
+0%
|
3−4
+0%
|
Call of Duty: Modern Warfare | 3−4
+0%
|
3−4
+0%
|
Cyberpunk 2077 | 2−3
+0%
|
2−3
+0%
|
Far Cry 5 | 4−5
+0%
|
4−5
+0%
|
Forza Horizon 4 | 3−4
+0%
|
3−4
+0%
|
Hitman 3 | 8−9
+0%
|
8−9
+0%
|
Horizon Zero Dawn | 9−10
+0%
|
9−10
+0%
|
The Witcher 3: Wild Hunt | 3−4
+0%
|
3−4
+0%
|
Watch Dogs: Legion | 21−24
+0%
|
21−24
+0%
|
1440p
Epic Preset
Red Dead Redemption 2 | 7−8
+0%
|
7−8
+0%
|
4K
High Preset
Battlefield 5 | 2−3
+0%
|
2−3
+0%
|
Far Cry New Dawn | 2−3
+0%
|
2−3
+0%
|
Metro Exodus | 0−1 | 0−1 |
4K
Ultra Preset
Assassin's Creed Odyssey | 3−4
+0%
|
3−4
+0%
|
Assassin's Creed Valhalla | 2−3
+0%
|
2−3
+0%
|
Call of Duty: Modern Warfare | 1−2
+0%
|
1−2
+0%
|
Cyberpunk 2077 | 0−1 | 0−1 |
Far Cry 5 | 2−3
+0%
|
2−3
+0%
|
Forza Horizon 4 | 2−3
+0%
|
2−3
+0%
|
Watch Dogs: Legion | 1−2
+0%
|
1−2
+0%
|
4K
Epic Preset
Red Dead Redemption 2 | 5−6
+0%
|
5−6
+0%
|
This is how GTX 780 Rev. 2 and GeForce MX110 compete in popular games:
- GTX 780 Rev. 2 is 165% faster in 1080p
All in all, in popular games:
- there's a draw in 63 tests (100%)
Pros & cons summary
Performance score | 10.67 | 3.72 |
Recency | 10 September 2013 | 17 November 2017 |
Maximum RAM amount | 3 GB | 2 GB |
Power consumption (TDP) | 250 Watt | 30 Watt |
GTX 780 Rev. 2 has a 186.8% higher aggregate performance score, and a 50% higher maximum VRAM amount.
GeForce MX110, on the other hand, has an age advantage of 4 years, and 733.3% lower power consumption.
The GeForce GTX 780 Rev. 2 is our recommended choice as it beats the GeForce MX110 in performance tests.
Be aware that GeForce GTX 780 Rev. 2 is a desktop card while GeForce MX110 is a notebook one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.