Radeon R7 250E vs GeForce GTX 1070 SLI Mobile
Aggregate performance score
We've compared GeForce GTX 1070 SLI Mobile with Radeon R7 250E, including specs and performance data.
GTX 1070 SLI Mobile outperforms R7 250E by a whopping 863% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 93 | 665 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | no data | 1.13 |
Power efficiency | no data | 5.51 |
Architecture | Pascal (2016−2021) | GCN 1.0 (2011−2020) |
GPU code name | Pascal GP104 SLI | Cape Verde |
Market segment | Laptop | Desktop |
Release date | 16 August 2016 (8 years ago) | 20 December 2013 (10 years ago) |
Launch price (MSRP) | no data | $109 |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 4096 | 512 |
Core clock speed | 1443 MHz | 800 MHz |
Boost clock speed | 1645 MHz | no data |
Number of transistors | 14400 Million | 1,500 million |
Manufacturing process technology | 16 nm | 28 nm |
Power consumption (TDP) | no data | 55 Watt |
Texture fill rate | no data | 25.60 |
Floating-point processing power | no data | 0.8192 TFLOPS |
ROPs | no data | 16 |
TMUs | no data | 32 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | large | no data |
Interface | no data | PCIe 3.0 x16 |
Length | no data | 168 mm |
Width | no data | 1-slot |
Supplementary power connectors | no data | None |
SLI options | + | - |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | GDDR5 | GDDR5 |
Maximum RAM amount | 2x 8 GB | 1 GB |
Memory bus width | 256 Bit | 128 Bit |
Memory clock speed | 8000 MHz | 1125 MHz |
Memory bandwidth | no data | 72 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | no data | 1x DVI, 1x HDMI, 1x DisplayPort |
HDMI | - | + |
G-SYNC support | + | - |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
VR Ready | + | no data |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | 12_1 | 12 (11_1) |
Shader Model | no data | 5.1 |
OpenGL | no data | 4.6 |
OpenCL | no data | 1.2 |
Vulkan | + | 1.2.131 |
CUDA | + | - |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
3DMark Fire Strike Graphics
Fire Strike is a DirectX 11 benchmark for gaming PCs. It features two separate tests displaying a fight between a humanoid and a fiery creature made of lava. Using 1920x1080 resolution, Fire Strike shows off some realistic graphics and is quite taxing on hardware.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 139
+893%
| 14−16
−893%
|
4K | 79
+888%
| 8−9
−888%
|
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 70−75
+943%
|
7−8
−943%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 85−90
+867%
|
9−10
−867%
|
Assassin's Creed Valhalla | 70−75
+914%
|
7−8
−914%
|
Battlefield 5 | 130−140
+1000%
|
12−14
−1000%
|
Call of Duty: Modern Warfare | 80−85
+938%
|
8−9
−938%
|
Cyberpunk 2077 | 70−75
+943%
|
7−8
−943%
|
Far Cry 5 | 85−90
+878%
|
9−10
−878%
|
Far Cry New Dawn | 100−110
+920%
|
10−11
−920%
|
Forza Horizon 4 | 190−200
+989%
|
18−20
−989%
|
Hitman 3 | 85−90
+878%
|
9−10
−878%
|
Horizon Zero Dawn | 170−180
+963%
|
16−18
−963%
|
Metro Exodus | 130−140
+983%
|
12−14
−983%
|
Red Dead Redemption 2 | 95−100
+956%
|
9−10
−956%
|
Shadow of the Tomb Raider | 150−160
+986%
|
14−16
−986%
|
Watch Dogs: Legion | 130−140
+992%
|
12−14
−992%
|
Full HD
High Preset
Assassin's Creed Odyssey | 85−90
+867%
|
9−10
−867%
|
Assassin's Creed Valhalla | 70−75
+914%
|
7−8
−914%
|
Battlefield 5 | 130−140
+1000%
|
12−14
−1000%
|
Call of Duty: Modern Warfare | 80−85
+938%
|
8−9
−938%
|
Cyberpunk 2077 | 70−75
+943%
|
7−8
−943%
|
Far Cry 5 | 85−90
+878%
|
9−10
−878%
|
Far Cry New Dawn | 100−110
+920%
|
10−11
−920%
|
Forza Horizon 4 | 190−200
+989%
|
18−20
−989%
|
Hitman 3 | 85−90
+878%
|
9−10
−878%
|
Horizon Zero Dawn | 170−180
+963%
|
16−18
−963%
|
Metro Exodus | 130−140
+983%
|
12−14
−983%
|
Red Dead Redemption 2 | 95−100
+956%
|
9−10
−956%
|
Shadow of the Tomb Raider | 150−160
+986%
|
14−16
−986%
|
The Witcher 3: Wild Hunt | 170
+963%
|
16−18
−963%
|
Watch Dogs: Legion | 130−140
+992%
|
12−14
−992%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 85−90
+867%
|
9−10
−867%
|
Assassin's Creed Valhalla | 70−75
+914%
|
7−8
−914%
|
Call of Duty: Modern Warfare | 80−85
+938%
|
8−9
−938%
|
Cyberpunk 2077 | 70−75
+943%
|
7−8
−943%
|
Far Cry 5 | 85−90
+878%
|
9−10
−878%
|
Forza Horizon 4 | 190−200
+989%
|
18−20
−989%
|
Hitman 3 | 85−90
+878%
|
9−10
−878%
|
Horizon Zero Dawn | 170−180
+963%
|
16−18
−963%
|
Shadow of the Tomb Raider | 150−160
+986%
|
14−16
−986%
|
The Witcher 3: Wild Hunt | 100
+900%
|
10−11
−900%
|
Watch Dogs: Legion | 130−140
+992%
|
12−14
−992%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 95−100
+956%
|
9−10
−956%
|
1440p
High Preset
Battlefield 5 | 80−85
+900%
|
8−9
−900%
|
Far Cry New Dawn | 60−65
+950%
|
6−7
−950%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 45−50
+1025%
|
4−5
−1025%
|
Assassin's Creed Valhalla | 45−50
+1050%
|
4−5
−1050%
|
Call of Duty: Modern Warfare | 45−50
+880%
|
5−6
−880%
|
Cyberpunk 2077 | 30−35
+1033%
|
3−4
−1033%
|
Far Cry 5 | 45−50
+1100%
|
4−5
−1100%
|
Forza Horizon 4 | 220−230
+990%
|
21−24
−990%
|
Hitman 3 | 50−55
+980%
|
5−6
−980%
|
Horizon Zero Dawn | 90−95
+900%
|
9−10
−900%
|
Metro Exodus | 75−80
+1000%
|
7−8
−1000%
|
Shadow of the Tomb Raider | 100−110
+910%
|
10−11
−910%
|
The Witcher 3: Wild Hunt | 60−65
+917%
|
6−7
−917%
|
Watch Dogs: Legion | 190−200
+1000%
|
18−20
−1000%
|
1440p
Epic Preset
Red Dead Redemption 2 | 70−75
+914%
|
7−8
−914%
|
4K
High Preset
Battlefield 5 | 40−45
+950%
|
4−5
−950%
|
Far Cry New Dawn | 35−40
+1067%
|
3−4
−1067%
|
Hitman 3 | 30−35
+1033%
|
3−4
−1033%
|
Horizon Zero Dawn | 180−190
+939%
|
18−20
−939%
|
Metro Exodus | 50−55
+960%
|
5−6
−960%
|
The Witcher 3: Wild Hunt | 72
+929%
|
7−8
−929%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 27−30
+1300%
|
2−3
−1300%
|
Assassin's Creed Valhalla | 24−27
+1200%
|
2−3
−1200%
|
Call of Duty: Modern Warfare | 27−30
+1250%
|
2−3
−1250%
|
Cyberpunk 2077 | 14−16
+1300%
|
1−2
−1300%
|
Far Cry 5 | 24−27
+1100%
|
2−3
−1100%
|
Forza Horizon 4 | 55−60
+867%
|
6−7
−867%
|
Shadow of the Tomb Raider | 55−60
+1040%
|
5−6
−1040%
|
Watch Dogs: Legion | 21−24
+950%
|
2−3
−950%
|
4K
Epic Preset
Red Dead Redemption 2 | 35−40
+1133%
|
3−4
−1133%
|
This is how GTX 1070 SLI Mobile and R7 250E compete in popular games:
- GTX 1070 SLI Mobile is 893% faster in 1080p
- GTX 1070 SLI Mobile is 888% faster in 4K
Pros & cons summary
Performance score | 41.97 | 4.36 |
Recency | 16 August 2016 | 20 December 2013 |
Chip lithography | 16 nm | 28 nm |
GTX 1070 SLI Mobile has a 862.6% higher aggregate performance score, an age advantage of 2 years, and a 75% more advanced lithography process.
The GeForce GTX 1070 SLI Mobile is our recommended choice as it beats the Radeon R7 250E in performance tests.
Be aware that GeForce GTX 1070 SLI Mobile is a notebook card while Radeon R7 250E is a desktop one.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.