Quadro P4200 vs GeForce 9400M GeForceBoost

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot rated209
Place by popularitynot in top-100not in top-100
Power efficiencyno data17.40
Architectureno dataPascal (2016−2021)
GPU code nameno dataGP104
Market segmentLaptopMobile workstation
Release date3 June 2008 (16 years ago)21 February 2018 (6 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores242304
Core clock speedno data1227 MHz
Boost clock speedno data1647 MHz
Number of transistorsno data7,200 million
Manufacturing process technology65 nm16 nm
Power consumption (TDP)no data100 Watt
Texture fill rateno data237.2
Floating-point processing powerno data7.589 TFLOPS
ROPsno data64
TMUsno data144

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizeno datalarge
Interfaceno dataMXM-B (3.0)
Supplementary power connectorsno dataNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeno dataGDDR5
Maximum RAM amountno data8 GB
Memory bus width64 Bit256 Bit
Memory clock speedno data1502 MHz
Memory bandwidthno data192.3 GB/s
Shared memory--

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectorsno dataNo outputs

Supported technologies

Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.

Optimus-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX1012 (12_1)
Shader Modelno data6.4
OpenGLno data4.6
OpenCLno data1.2
Vulkan-1.2.131
CUDA-6.1

Pros & cons summary


Recency 3 June 2008 21 February 2018
Chip lithography 65 nm 16 nm

Quadro P4200 has an age advantage of 9 years, and a 306.3% more advanced lithography process.

We couldn't decide between GeForce 9400M GeForceBoost and Quadro P4200. We've got no test results to judge.

Be aware that GeForce 9400M GeForceBoost is a notebook graphics card while Quadro P4200 is a mobile workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA GeForce 9400M GeForceBoost
GeForce 9400M GeForceBoost
NVIDIA Quadro P4200
Quadro P4200

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


2.4 14 votes

Rate GeForce 9400M GeForceBoost on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.6 57 votes

Rate Quadro P4200 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.