Quadro P520 vs GeForce 3 Go

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the rankingnot rated604
Place by popularitynot in top-100not in top-100
Power efficiencyno data20.89
Architectureno dataPascal (2016−2021)
GPU code nameno dataGP108
Market segmentLaptopMobile workstation
Release date1 February 2002 (22 years ago)23 May 2019 (5 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA coresno data384
Core clock speedno data1303 MHz
Boost clock speed250 MHz1493 MHz
Number of transistors27 Million1,800 million
Manufacturing process technology150 nm14 nm
Power consumption (TDP)2 Watt18 Watt
Texture fill rateno data35.83
Floating-point processing powerno data1.147 TFLOPS
ROPsno data16
TMUsno data24

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizemedium sizedlarge
Interfaceno dataPCIe 3.0 x16
Supplementary power connectorsno dataNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeDDRGDDR5
Maximum RAM amount64 MB2 GB
Memory bus width32 / 64 / 128 Bit64 Bit
Memory clock speedno data1502 MHz
Memory bandwidthno data48.06 GB/s
Shared memory--

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectorsno dataNo outputs

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectXDDR12 (12_1)
Shader Modelno data6.4
OpenGLno data4.6
OpenCLno data1.2
Vulkan-1.2.131
CUDA-6.1

Pros & cons summary


Recency 1 February 2002 23 May 2019
Maximum RAM amount 64 MB 2 GB
Chip lithography 150 nm 14 nm
Power consumption (TDP) 2 Watt 18 Watt

GeForce 3 Go has 800% lower power consumption.

Quadro P520, on the other hand, has an age advantage of 17 years, a 3100% higher maximum VRAM amount, and a 971.4% more advanced lithography process.

We couldn't decide between GeForce 3 Go and Quadro P520. We've got no test results to judge.

Be aware that GeForce 3 Go is a notebook graphics card while Quadro P520 is a mobile workstation one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA GeForce 3 Go
GeForce 3 Go
NVIDIA Quadro P520
Quadro P520

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


2.8 5 votes

Rate GeForce 3 Go on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.4 101 vote

Rate Quadro P520 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.