GeForce GTX 1650 TU106 vs FirePro W4300

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking528not rated
Place by popularitynot in top-100not in top-100
Power efficiency10.46no data
ArchitectureGCN 2.0 (2013−2017)Turing (2018−2022)
GPU code nameBonaireTU106
Market segmentWorkstationDesktop
Release date1 December 2015 (8 years ago)18 June 2020 (4 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores768896
Core clock speed930 MHz1410 MHz
Boost clock speedno data1590 MHz
Number of transistors2,080 million10,800 million
Manufacturing process technology28 nm12 nm
Power consumption (TDP)50 Watt90 Watt
Texture fill rate44.6489.04
Floating-point processing power1.428 TFLOPS2.849 TFLOPS
ROPs1632
TMUs4856
Tensor Coresno data112
Ray Tracing Coresno data14

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfacePCIe 3.0 x16PCIe 3.0 x16
Length171 mm229 mm
Width1-slot2-slot
Supplementary power connectorsNone1x 6-pin

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR5GDDR6
Maximum RAM amount4 GB4 GB
Memory bus width128 Bit128 Bit
Memory clock speed1500 MHz1500 MHz
Memory bandwidth96 GB/s192.0 GB/s

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors4x mini-DisplayPort1x DVI, 1x HDMI, 1x DisplayPort
HDMI-+

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_0)12 Ultimate (12_2)
Shader Model6.36.5
OpenGL4.64.6
OpenCL2.01.2
Vulkan1.2.1311.2
CUDA-7.5

Pros & cons summary


Recency 1 December 2015 18 June 2020
Chip lithography 28 nm 12 nm
Power consumption (TDP) 50 Watt 90 Watt

FirePro W4300 has 80% lower power consumption.

GTX 1650 TU106, on the other hand, has an age advantage of 4 years, and a 133.3% more advanced lithography process.

We couldn't decide between FirePro W4300 and GeForce GTX 1650 TU106. We've got no test results to judge.

Be aware that FirePro W4300 is a workstation graphics card while GeForce GTX 1650 TU106 is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD FirePro W4300
FirePro W4300
NVIDIA GeForce GTX 1650 TU106
GeForce GTX 1650 TU106

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


4.2 23 votes

Rate FirePro W4300 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.6 273 votes

Rate GeForce GTX 1650 TU106 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.