GMA X4500 vs Arc A350M

VS

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking352not rated
Place by popularitynot in top-100not in top-100
Power efficiency40.83no data
ArchitectureGeneration 12.7 (2022−2023)Generation 5.0 (2008)
GPU code nameDG2-128Eaglelake
Market segmentLaptopDesktop
Release date30 March 2022 (2 years ago)1 June 2008 (16 years ago)

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores76880
Core clock speed300 MHz533 MHz
Boost clock speed1150 MHzno data
Number of transistors7,200 millionno data
Manufacturing process technology6 nm65 nm
Power consumption (TDP)25 Watt13 Watt
Texture fill rate55.202.132
Floating-point processing power1.766 TFLOPSno data
ROPs244
TMUs484
Ray Tracing Cores6no data

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfacePCIe 4.0 x8PCIe 1.0 x16
Widthno dataIGP

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR6System Shared
Maximum RAM amount4 GBSystem Shared
Memory bus width64 BitSystem Shared
Memory clock speed1750 MHzSystem Shared
Memory bandwidth112.0 GB/sno data
Shared memory-no data

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display ConnectorsNo outputsNo outputs

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 Ultimate (12_2)10.0
Shader Model6.64.0
OpenGL4.62.0
OpenCL3.0N/A
Vulkan1.3N/A

Pros & cons summary


Recency 30 March 2022 1 June 2008
Chip lithography 6 nm 65 nm
Power consumption (TDP) 25 Watt 13 Watt

Arc A350M has an age advantage of 13 years, and a 983.3% more advanced lithography process.

GMA X4500, on the other hand, has 92.3% lower power consumption.

We couldn't decide between Arc A350M and GMA X4500. We've got no test results to judge.

Be aware that Arc A350M is a notebook card while GMA X4500 is a desktop one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


Intel Arc A350M
Arc A350M
Intel GMA X4500
GMA X4500

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.8 56 votes

Rate Arc A350M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.3 328 votes

Rate GMA X4500 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.