Ryzen 7 7700 vs Xeon E-2276M
Aggregate performance score
Ryzen 7 7700 outperforms Xeon E-2276M by a whopping 193% based on our aggregate benchmark results.
Primary details
Comparing Xeon E-2276M and Ryzen 7 7700 processor market type (desktop or notebook), architecture, sales start time and price.
Place in the ranking | 968 | 238 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | 19.20 | 48.70 |
Market segment | Server | Desktop processor |
Series | Intel Xeon E | AMD Ryzen 7 |
Power efficiency | 15.64 | 31.74 |
Architecture codename | Coffee Lake-H (2018−2019) | Raphael (Zen4) (2022−2023) |
Release date | 27 May 2019 (5 years ago) | 4 January 2023 (1 year ago) |
Launch price (MSRP) | $450 | $339 |
Cost-effectiveness evaluation
Performance per price, higher is better.
Ryzen 7 7700 has 154% better value for money than Xeon E-2276M.
Detailed specifications
Xeon E-2276M and Ryzen 7 7700 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.
Physical cores | 6 (Hexa-Core) | 8 (Octa-Core) |
Threads | 12 | 16 |
Base clock speed | 2.8 GHz | 3.8 GHz |
Boost clock speed | 4.7 GHz | 5.3 GHz |
Bus type | DMI 3.0 | no data |
Bus rate | 4 × 8 GT/s | no data |
Multiplier | 28 | no data |
L1 cache | 384 KB | 512 KB |
L2 cache | 1.5 MB | 8 MB |
L3 cache | 12 MB (shared) | 32 MB (shared) |
Chip lithography | 14 nm | 5 nm, 6 nm |
Die size | 149.6 mm2 | 71 mm2 |
Maximum core temperature | 100 °C | 95 °C |
Maximum case temperature (TCase) | no data | 61 °C |
Number of transistors | no data | 6,570 million |
64 bit support | + | + |
Windows 11 compatibility | + | + |
Unlocked multiplier | - | + |
Compatibility
Information on Xeon E-2276M and Ryzen 7 7700 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.
Number of CPUs in a configuration | 1 (Uniprocessor) | 1 |
Socket | FCBGA1440 | AM5 |
Power consumption (TDP) | 45 Watt | 65W, (85W real world) |
Technologies and extensions
Technological solutions and additional instructions supported by Xeon E-2276M and Ryzen 7 7700. You'll probably need this information if you require some particular technology.
Instruction set extensions | Intel® SSE4.1, Intel® SSE4.2, Intel® AVX2 | 5 nm, 0.650 - 1.475V |
AES-NI | + | + |
AVX | + | + |
vPro | + | no data |
Enhanced SpeedStep (EIST) | + | no data |
Speed Shift | + | no data |
My WiFi | + | no data |
Turbo Boost Technology | 2.0 | no data |
Hyper-Threading Technology | + | no data |
TSX | + | - |
Idle States | + | no data |
Thermal Monitoring | + | - |
Flex Memory Access | + | no data |
SIPP | + | - |
Precision Boost 2 | no data | + |
Security technologies
Xeon E-2276M and Ryzen 7 7700 technologies aimed at improving security, for example, by protecting against hacks.
TXT | + | no data |
EDB | + | no data |
Secure Key | + | no data |
MPX | + | - |
Identity Protection | + | - |
SGX | Yes with Intel® ME | no data |
OS Guard | + | no data |
Virtualization technologies
Virtual machine speed-up technologies supported by Xeon E-2276M and Ryzen 7 7700 are enumerated here.
AMD-V | + | + |
VT-d | + | no data |
VT-x | + | no data |
EPT | + | no data |
Memory specs
Types, maximum amount and channel quantity of RAM supported by Xeon E-2276M and Ryzen 7 7700. Depending on the motherboard, higher memory frequencies may be supported.
Supported memory types | DDR4 | DDR5-5200 |
Maximum memory size | 128 GB | 128 GB |
Max memory channels | 2 | no data |
Maximum memory bandwidth | 42.671 GB/s | no data |
ECC memory support | + | - |
Graphics specifications
General parameters of integrated GPUs, if any.
Integrated graphics card Compare | Intel UHD Graphics P630 | AMD Radeon Graphics (Ryzen 7000) |
Max video memory | 64 GB | no data |
Quick Sync Video | + | - |
Clear Video | + | no data |
Clear Video HD | + | no data |
Graphics max frequency | 1.2 GHz | no data |
InTru 3D | + | no data |
Graphics interfaces
Available interfaces and connections of Xeon E-2276M and Ryzen 7 7700 integrated GPUs.
Number of displays supported | 3 | no data |
eDP | + | no data |
DisplayPort | + | - |
HDMI | + | - |
DVI | + | no data |
Graphics image quality
Maximum display resolutions supported by Xeon E-2276M and Ryzen 7 7700 integrated GPUs, including resolutions over different interfaces.
4K resolution support | + | no data |
Max resolution over HDMI 1.4 | 4096x2304@30Hz | no data |
Max resolution over eDP | 4096x2304@60Hz | no data |
Max resolution over DisplayPort | 4096x2304@60Hz | no data |
Max resolution over VGA | N/A | no data |
Graphics API support
APIs supported by Xeon E-2276M and Ryzen 7 7700 integrated GPUs, sometimes API versions are included.
DirectX | 12 | no data |
OpenGL | 4.5 | no data |
Peripherals
Specifications and connection of peripherals supported by Xeon E-2276M and Ryzen 7 7700.
PCIe version | 3.0 | 5.0 |
PCI Express lanes | 16 | 24 |
Synthetic benchmark performance
Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.
Combined synthetic benchmark score
This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Passmark
Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.
GeekBench 5 Single-Core
GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.
GeekBench 5 Multi-Core
GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.
Cinebench 15 64-bit multi-core
Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.
Cinebench 15 64-bit single-core
Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.
Geekbench 5.5 Multi-Core
Blender(-)
Geekbench 5.5 Single-Core
7-Zip Single
7-Zip
WebXPRT 3
Pros & cons summary
Performance score | 7.47 | 21.89 |
Integrated graphics card | 6.39 | 4.42 |
Recency | 27 May 2019 | 4 January 2023 |
Physical cores | 6 | 8 |
Threads | 12 | 16 |
Chip lithography | 14 nm | 5 nm |
Power consumption (TDP) | 45 Watt | 65 Watt |
Xeon E-2276M has 44.6% faster integrated GPU, and 44.4% lower power consumption.
Ryzen 7 7700, on the other hand, has a 193% higher aggregate performance score, an age advantage of 3 years, 33.3% more physical cores and 33.3% more threads, and a 180% more advanced lithography process.
The Ryzen 7 7700 is our recommended choice as it beats the Xeon E-2276M in performance tests.
Be aware that Xeon E-2276M is a server/workstation processor while Ryzen 7 7700 is a desktop one.
Should you still have questions on choice between Xeon E-2276M and Ryzen 7 7700, ask them in Comments section, and we shall answer.
Similar processor comparisons
We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.