i7-10750H vs Ryzen Threadripper 2970WX

Aggregate performance score

Ryzen Threadripper 2970WX
2018
24 cores / 48 threads, 250 Watt
20.04
+159%

Ryzen Threadripper 2970WX outperforms Core i7-10750H by a whopping 159% based on our aggregate benchmark results.

Primary details

Comparing Ryzen Threadripper 2970WX and Core i7-10750H processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking293961
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation6.41no data
Market segmentDesktop processorLaptop
SeriesAMD Ryzen ThreadripperIntel Comet Lake
Power efficiency7.3115.68
Architecture codenameZen+ (2018−2019)Comet Lake-H (2020)
Release date6 August 2018 (6 years ago)2 April 2020 (4 years ago)
Launch price (MSRP)$1,299$435

Cost-effectiveness evaluation

Performance per price, higher is better.

no data

Detailed specifications

Ryzen Threadripper 2970WX and Core i7-10750H basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores24 (Tetracosa-Core)6 (Hexa-Core)
Threads4812
Base clock speed3 GHz2.6 GHz
Boost clock speed4.2 GHz5 GHz
Bus rate4 × 8 GT/s8 GT/s
Multiplier30no data
L1 cache2.25 MB64K (per core)
L2 cache12 MB256K (per core)
L3 cache64 MB8 MB (shared)
Chip lithography12 nm14 nm
Die size213 mm2no data
Maximum core temperatureno data100 °C
Maximum case temperature (TCase)no data72 °C
Number of transistors19200 Millionno data
64 bit support++
Windows 11 compatibility++
Unlocked multiplier+-

Compatibility

Information on Ryzen Threadripper 2970WX and Core i7-10750H compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration1 (Uniprocessor)1
SocketSocket TR4FCBGA1440
Power consumption (TDP)250 Watt45 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Ryzen Threadripper 2970WX and Core i7-10750H. You'll probably need this information if you require some particular technology.

Instruction set extensionsno dataIntel® SSE4.1, Intel® SSE4.2, Intel® AVX2
AES-NI++
FMA-+
AVX++
Enhanced SpeedStep (EIST)no data+
Speed Shiftno data+
Hyper-Threading Technologyno data+
Idle Statesno data+
Thermal Monitoring-+
Flex Memory Accessno data+
Turbo Boost Max 3.0no data+
Precision Boost 2+no data

Security technologies

Ryzen Threadripper 2970WX and Core i7-10750H technologies aimed at improving security, for example, by protecting against hacks.

TXTno data+
EDBno data+
Secure Keyno data+
Identity Protection-+
SGXno dataYes with Intel® ME
OS Guardno data+

Virtualization technologies

Virtual machine speed-up technologies supported by Ryzen Threadripper 2970WX and Core i7-10750H are enumerated here.

AMD-V+-
VT-dno data+
VT-xno data+
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by Ryzen Threadripper 2970WX and Core i7-10750H. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR4 Quad-channelDDR4
Maximum memory size2 TiB128 GB
Max memory channels42
Maximum memory bandwidth93.867 GB/s45.8 GB/s
ECC memory support+-

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card-Intel® UHD Graphics for 10th Gen Intel® Processors
Quick Sync Video-+
Graphics max frequency-1.15 GHz

Graphics interfaces

Available interfaces and connections of Ryzen Threadripper 2970WX and Core i7-10750H integrated GPUs.

Number of displays supported-3
eDP-+
DisplayPort-+
HDMI-+
DVI-+

Graphics image quality

Maximum display resolutions supported by Ryzen Threadripper 2970WX and Core i7-10750H integrated GPUs, including resolutions over different interfaces.

4K resolution support-+
Max resolution over HDMI 1.4-4096 x 2304@30Hz
Max resolution over eDP-4096 x 2304@60Hz
Max resolution over DisplayPort-4096 x 2304@60Hz

Graphics API support

APIs supported by Ryzen Threadripper 2970WX and Core i7-10750H integrated GPUs, sometimes API versions are included.

DirectX-12
OpenGL-4.5

Peripherals

Specifications and connection of peripherals supported by Ryzen Threadripper 2970WX and Core i7-10750H.

PCIe versionno data3.0
PCI Express lanesno data16

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Ryzen Threadripper 2970WX 20.04
+159%
i7-10750H 7.74

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Ryzen Threadripper 2970WX 30669
+159%
i7-10750H 11847

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

Ryzen Threadripper 2970WX 1239
i7-10750H 1452
+17.2%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

Ryzen Threadripper 2970WX 7221
+34.9%
i7-10750H 5354

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

Ryzen Threadripper 2970WX 5241
i7-10750H 7377
+40.7%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

Ryzen Threadripper 2970WX 37522
+1%
i7-10750H 37154

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

Ryzen Threadripper 2970WX 11073
i7-10750H 11307
+2.1%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

Ryzen Threadripper 2970WX 4.16
+33.7%
i7-10750H 5.56

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Ryzen Threadripper 2970WX 22
+55.2%
i7-10750H 14

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

Ryzen Threadripper 2970WX 4376
+236%
i7-10750H 1304

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

Ryzen Threadripper 2970WX 173
i7-10750H 197
+13.9%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Ryzen Threadripper 2970WX 1.9
i7-10750H 2.2
+15.8%

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

Ryzen Threadripper 2970WX 12.2
+60.5%
i7-10750H 7.6

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

Ryzen Threadripper 2970WX 117
+48.8%
i7-10750H 78

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

Ryzen Threadripper 2970WX 202
i7-10750H 221
+9.5%

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

Ryzen Threadripper 2970WX 4261
i7-10750H 6287
+47.5%

Gaming performance

Pros & cons summary


Performance score 20.04 7.74
Recency 6 August 2018 2 April 2020
Physical cores 24 6
Threads 48 12
Chip lithography 12 nm 14 nm
Power consumption (TDP) 250 Watt 45 Watt

Ryzen Threadripper 2970WX has a 158.9% higher aggregate performance score, 300% more physical cores and 300% more threads, and a 16.7% more advanced lithography process.

i7-10750H, on the other hand, has an age advantage of 1 year, and 455.6% lower power consumption.

The Ryzen Threadripper 2970WX is our recommended choice as it beats the Core i7-10750H in performance tests.

Note that Ryzen Threadripper 2970WX is a desktop processor while Core i7-10750H is a notebook one.


Should you still have questions on choice between Ryzen Threadripper 2970WX and Core i7-10750H, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD Ryzen Threadripper 2970WX
Ryzen Threadripper 2970WX
Intel Core i7-10750H
Core i7-10750H

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


4.3 15 votes

Rate Ryzen Threadripper 2970WX on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4 2139 votes

Rate Core i7-10750H on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Ryzen Threadripper 2970WX or Core i7-10750H, agree or disagree with our judgements, or report an error or mismatch.