i5-9400F vs Ryzen 7 2700U

VS

Aggregate performance score

Ryzen 7 2700U
2017
4 cores / 8 threads, 15 Watt
4.46
Core i5-9400F
2019
6 cores / 6 threads, 65 Watt
6.19
+38.8%

Core i5-9400F outperforms Ryzen 7 2700U by a substantial 39% based on our aggregate benchmark results.

Primary details

Comparing Ryzen 7 2700U and Core i5-9400F processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking13531091
Place by popularitynot in top-10025
Cost-effectiveness evaluationno data9.22
Market segmentLaptopDesktop processor
SeriesAMD Ryzen 7Intel Core i5
Power efficiency27.118.68
Architecture codenameRaven Ridge (2017−2018)Coffee Lake-R (2018−2019)
Release date26 October 2017 (7 years ago)7 January 2019 (5 years ago)
Launch price (MSRP)no data$182

Cost-effectiveness evaluation

Performance per price, higher is better.

no data

Detailed specifications

Ryzen 7 2700U and Core i5-9400F basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)6 (Hexa-Core)
Threads86
Base clock speed2.2 GHz2.9 GHz
Boost clock speed2.2 GHz4.1 GHz
Bus typeno dataDMI 3.0
Bus rateno data4 × 8 GT/s
Multiplier2229
L1 cache384 KB385 KB
L2 cache2 MB1.5 MB
L3 cache4 MB (shared)9 MB (shared)
Chip lithography14 nm14 nm
Die size209.78 mm2149 mm2
Maximum core temperatureno data100 °C
Maximum case temperature (TCase)no data72 °C
Number of transistors4950 Millionno data
64 bit support++
Windows 11 compatibility-+

Compatibility

Information on Ryzen 7 2700U and Core i5-9400F compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration1 (Uniprocessor)1 (Uniprocessor)
SocketFP5FCLGA1151
Power consumption (TDP)15 Watt65 Watt

Technologies and extensions

Technological solutions and additional instructions supported by Ryzen 7 2700U and Core i5-9400F. You'll probably need this information if you require some particular technology.

Instruction set extensionsXFR, FMA3, SSE 4.2, AVX2, SMTIntel® SSE4.1, Intel® SSE4.2, Intel® AVX2
AES-NI++
AVX++
Enhanced SpeedStep (EIST)no data+
Turbo Boost Technologyno data2.0
Hyper-Threading Technologyno data-
Idle Statesno data+
Thermal Monitoring-+

Security technologies

Ryzen 7 2700U and Core i5-9400F technologies aimed at improving security, for example, by protecting against hacks.

TXTno data-
EDBno data+
Secure Keyno data+
MPX-+
Identity Protection-+
SGXno dataYes with Intel® ME
OS Guardno data+

Virtualization technologies

Virtual machine speed-up technologies supported by Ryzen 7 2700U and Core i5-9400F are enumerated here.

AMD-V+-
VT-dno data+
VT-xno data+
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by Ryzen 7 2700U and Core i5-9400F. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR4 Dual-channelDDR4-2666
Maximum memory size32 GB128 GB
Max memory channels22
Maximum memory bandwidth38.397 GB/s42.671 GB/s
ECC memory support+-

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics cardAMD Radeon RX Vega 10no data

Peripherals

Specifications and connection of peripherals supported by Ryzen 7 2700U and Core i5-9400F.

PCIe version3.03.0
PCI Express lanes1216

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

Ryzen 7 2700U 4.46
i5-9400F 6.19
+38.8%

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

Ryzen 7 2700U 6825
i5-9400F 9469
+38.7%

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

Ryzen 7 2700U 815
i5-9400F 1403
+72.1%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

Ryzen 7 2700U 2461
i5-9400F 4893
+98.8%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

Ryzen 7 2700U 4515
i5-9400F 6490
+43.7%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

Ryzen 7 2700U 13729
i5-9400F 31523
+130%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

Ryzen 7 2700U 8.55
i5-9400F 6.76
+26.5%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

Ryzen 7 2700U 8
i5-9400F 11
+49.7%

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

Ryzen 7 2700U 644
i5-9400F 984
+52.8%

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

Ryzen 7 2700U 144
i5-9400F 173
+20.6%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

Ryzen 7 2700U 1.65
i5-9400F 1.95
+18.2%

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

Ryzen 7 2700U 36
i5-9400F 64
+75.8%

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

Ryzen 7 2700U 128
i5-9400F 234
+82.8%

Geekbench 5.5 Multi-Core

Ryzen 7 2700U 2969
i5-9400F 5715
+92.5%

Blender(-)

Ryzen 7 2700U 713
+52.2%
i5-9400F 469

Geekbench 5.5 Single-Core

Ryzen 7 2700U 813
i5-9400F 1139
+40.1%

7-Zip Single

Ryzen 7 2700U 3592
i5-9400F 4678
+30.2%

7-Zip

Ryzen 7 2700U 17317
i5-9400F 25639
+48.1%

WebXPRT 3

Ryzen 7 2700U 142
i5-9400F 211
+48.6%

Gaming performance

Pros & cons summary


Performance score 4.46 6.19
Recency 26 October 2017 7 January 2019
Physical cores 4 6
Threads 8 6
Power consumption (TDP) 15 Watt 65 Watt

Ryzen 7 2700U has 33.3% more threads, and 333.3% lower power consumption.

i5-9400F, on the other hand, has a 38.8% higher aggregate performance score, an age advantage of 1 year, and 50% more physical cores.

The Core i5-9400F is our recommended choice as it beats the Ryzen 7 2700U in performance tests.

Be aware that Ryzen 7 2700U is a notebook processor while Core i5-9400F is a desktop one.


Should you still have questions on choice between Ryzen 7 2700U and Core i5-9400F, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD Ryzen 7 2700U
Ryzen 7 2700U
Intel Core i5-9400F
Core i5-9400F

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.7 199 votes

Rate Ryzen 7 2700U on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
4.9 56577 votes

Rate Core i5-9400F on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about Ryzen 7 2700U or Core i5-9400F, agree or disagree with our judgements, or report an error or mismatch.