Celeron N4500 vs Pentium P6000
Aggregate performance score
Celeron N4500 outperforms Pentium P6000 by a whopping 144% based on our aggregate benchmark results.
Primary details
Comparing Pentium P6000 and Celeron N4500 processor market type (desktop or notebook), architecture, sales start time and price.
Place in the ranking | 2865 | 2300 |
Place by popularity | not in top-100 | not in top-100 |
Market segment | Laptop | Laptop |
Series | Intel Pentium | no data |
Power efficiency | 1.38 | 19.66 |
Architecture codename | Arrandale (2010−2011) | Jasper Lake (2021) |
Release date | 20 June 2010 (14 years ago) | 11 January 2021 (3 years ago) |
Detailed specifications
Pentium P6000 and Celeron N4500 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.
Physical cores | 2 (Dual-core) | 2 (Dual-core) |
Threads | 2 | 2 |
Base clock speed | 1.86 GHz | 1.1 GHz |
Boost clock speed | 0.07 GHz | 2.8 GHz |
Bus type | DMI 1.0 | no data |
Bus rate | 1 × 2.5 GT/s | no data |
Multiplier | 14 | no data |
L1 cache | 128 KB | no data |
L2 cache | 512 KB | 1.5 MB |
L3 cache | 3 MB (shared) | 4 MB |
Chip lithography | 32 nm | 10 nm |
Die size | 81+114 mm2 | no data |
Maximum core temperature | 90 °C | 105 °C |
Number of transistors | 382 Million | no data |
64 bit support | + | + |
Windows 11 compatibility | - | + |
Compatibility
Information on Pentium P6000 and Celeron N4500 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.
Number of CPUs in a configuration | 1 (Uniprocessor) | 1 |
Socket | PGA988 | FCBGA1338 |
Power consumption (TDP) | 35 Watt | 6 Watt |
Technologies and extensions
Technological solutions and additional instructions supported by Pentium P6000 and Celeron N4500. You'll probably need this information if you require some particular technology.
Instruction set extensions | no data | Intel® SSE4.2 |
AES-NI | - | + |
FMA | + | - |
Enhanced SpeedStep (EIST) | + | + |
Speed Shift | no data | + |
Turbo Boost Technology | - | - |
Hyper-Threading Technology | - | - |
Idle States | + | + |
Thermal Monitoring | + | + |
Flex Memory Access | + | no data |
Smart Response | no data | - |
Demand Based Switching | - | no data |
PAE | 36 Bit | no data |
GPIO | no data | + |
Turbo Boost Max 3.0 | no data | - |
FDI | + | no data |
Fast Memory Access | + | no data |
Security technologies
Pentium P6000 and Celeron N4500 technologies aimed at improving security, for example, by protecting against hacks.
TXT | - | - |
EDB | + | no data |
Identity Protection | - | + |
SGX | no data | - |
OS Guard | no data | + |
Virtualization technologies
Virtual machine speed-up technologies supported by Pentium P6000 and Celeron N4500 are enumerated here.
VT-d | - | + |
VT-x | - | + |
EPT | no data | + |
Memory specs
Types, maximum amount and channel quantity of RAM supported by Pentium P6000 and Celeron N4500. Depending on the motherboard, higher memory frequencies may be supported.
Supported memory types | DDR3 | DDR4 |
Maximum memory size | 8 GB | 16 GB |
Max memory channels | 2 | 2 |
Maximum memory bandwidth | 17.051 GB/s | no data |
Graphics specifications
General parameters of integrated GPUs, if any.
Integrated graphics card | Intel® HD Graphics for Previous Generation Intel® Processors | Intel UHD Graphics |
Quick Sync Video | - | + |
Clear Video | + | no data |
Graphics max frequency | 667 MHz | 750 MHz |
Execution Units | no data | 16 |
Graphics interfaces
Available interfaces and connections of Pentium P6000 and Celeron N4500 integrated GPUs.
Number of displays supported | 2 | 3 |
eDP | no data | + |
DisplayPort | - | + |
HDMI | - | + |
MIPI-DSI | no data | + |
Graphics image quality
Maximum display resolutions supported by Pentium P6000 and Celeron N4500 integrated GPUs, including resolutions over different interfaces.
4K resolution support | no data | + |
Max resolution over HDMI 1.4 | no data | 4096x2160@60Hz |
Max resolution over eDP | no data | 4096x2160@60Hz |
Max resolution over DisplayPort | no data | 4096x2160@60Hz |
Graphics API support
APIs supported by Pentium P6000 and Celeron N4500 integrated GPUs, sometimes API versions are included.
DirectX | no data | 12 |
OpenGL | no data | 4.5 |
Peripherals
Specifications and connection of peripherals supported by Pentium P6000 and Celeron N4500.
PCIe version | 2.0 | no data |
PCI Express lanes | 16 | 8 |
USB revision | no data | 2.0/3.2 |
Max number of SATA 6 Gb/s Ports | no data | 2 |
Number of USB ports | no data | 14 |
Integrated LAN | no data | - |
UART | no data | + |
Synthetic benchmark performance
Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.
Combined synthetic benchmark score
This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Passmark
Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.
GeekBench 5 Single-Core
GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.
GeekBench 5 Multi-Core
GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.
3DMark06 CPU
3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.
wPrime 32
wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.
Cinebench 11.5 64-bit multi-core
Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.
Pros & cons summary
Performance score | 0.52 | 1.27 |
Recency | 20 June 2010 | 11 January 2021 |
Chip lithography | 32 nm | 10 nm |
Power consumption (TDP) | 35 Watt | 6 Watt |
Celeron N4500 has a 144.2% higher aggregate performance score, an age advantage of 10 years, a 220% more advanced lithography process, and 483.3% lower power consumption.
The Celeron N4500 is our recommended choice as it beats the Pentium P6000 in performance tests.
Should you still have questions on choice between Pentium P6000 and Celeron N4500, ask them in Comments section, and we shall answer.
Similar processor comparisons
We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.