Celeron Dual-Core T3000 vs A8-7410

VS

Primary details

Comparing A8-7410 and Celeron Dual-Core T3000 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking2030not rated
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesAMD A-SeriesIntel Celeron Dual-Core
Power efficiency6.52no data
Architecture codenameCarrizo-L (2015)Penryn-1M (2009)
Release date7 May 2015 (9 years ago)1 May 2009 (15 years ago)

Detailed specifications

A8-7410 and Celeron Dual-Core T3000 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)2 (Dual-core)
Threads42
Base clock speed2.2 GHzno data
Boost clock speed2.5 GHz1.8 GHz
Bus rateno data800 MHz
L1 cacheno data64 KB
L2 cache2048 KB1 MB
Chip lithography28 nm45 nm
Die sizeno data107 mm2
Maximum core temperature90 °C105 °C
Number of transistors930 Million410 Million
64 bit support++
Windows 11 compatibility--

Compatibility

Information on A8-7410 and Celeron Dual-Core T3000 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

SocketFP4P (478)
Power consumption (TDP)12 - 25 Watt35 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A8-7410 and Celeron Dual-Core T3000. You'll probably need this information if you require some particular technology.

Instruction set extensionsMMX, SSE4.2, AES, AVX, BMI1, F16C, AMD64, VT, AMD-Vno data
AES-NI+-
FMAFMA4-
AVX+-
PowerNow+-
PowerGating+-
VirusProtect+-

Virtualization technologies

Virtual machine speed-up technologies supported by A8-7410 and Celeron Dual-Core T3000 are enumerated here.

AMD-V+-
IOMMU 2.0+-

Memory specs

Types, maximum amount and channel quantity of RAM supported by A8-7410 and Celeron Dual-Core T3000. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3L-1866no data
Max memory channels1no data

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics cardAMD Radeon R5 Graphicsno data
Enduro+-
Switchable graphics+-
UVD+-
VCE+-

Graphics interfaces

Available interfaces and connections of A8-7410 and Celeron Dual-Core T3000 integrated GPUs.

DisplayPort+-
HDMI+-

Graphics API support

APIs supported by A8-7410 and Celeron Dual-Core T3000 integrated GPUs, sometimes API versions are included.

DirectXDirectX® 12no data
Vulkan+-

Peripherals

Specifications and connection of peripherals supported by A8-7410 and Celeron Dual-Core T3000.

PCIe version2.0no data

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.



Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A8-7410 2741
+299%
Celeron Dual-Core T3000 687

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A8-7410 1917
+6.7%
Celeron Dual-Core T3000 1797

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A8-7410 4665
+40.1%
Celeron Dual-Core T3000 3329

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

A8-7410 2936
+84.3%
Celeron Dual-Core T3000 1593

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

A8-7410 27
+69.1%
Celeron Dual-Core T3000 45.65

Pros & cons summary


Recency 7 May 2015 1 May 2009
Physical cores 4 2
Threads 4 2
Chip lithography 28 nm 45 nm
Power consumption (TDP) 12 Watt 35 Watt

A8-7410 has an age advantage of 6 years, 100% more physical cores and 100% more threads, a 60.7% more advanced lithography process, and 191.7% lower power consumption.

We couldn't decide between A8-7410 and Celeron Dual-Core T3000. We've got no test results to judge.


Should you still have questions on choice between A8-7410 and Celeron Dual-Core T3000, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A8-7410
A8-7410
Intel Celeron Dual-Core T3000
Celeron Dual-Core T3000

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.3 694 votes

Rate A8-7410 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.9 61 vote

Rate Celeron Dual-Core T3000 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A8-7410 or Celeron Dual-Core T3000, agree or disagree with our judgements, or report an error or mismatch.