Celeron J4025 vs A8-7100

VS

Aggregate performance score

A8-7100
2014
4 cores / 4 threads, 19 Watt
1.03
+10.8%
Celeron J4025
2019
2 cores / 2 threads, 10 Watt
0.93

A8-7100 outperforms Celeron J4025 by a moderate 11% based on our aggregate benchmark results.

Primary details

Comparing A8-7100 and Celeron J4025 processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking24542526
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluationno data2.67
Market segmentLaptopDesktop processor
SeriesAMD Kaverino data
Power efficiency5.138.80
Architecture codenameKaveri (2014−2015)Gemini Lake Refresh (2019)
Release date4 June 2014 (10 years ago)4 November 2019 (5 years ago)
Launch price (MSRP)no data$107

Cost-effectiveness evaluation

Performance per price, higher is better.

no data

Detailed specifications

A8-7100 and Celeron J4025 basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)2 (Dual-core)
Threads42
Base clock speed1.8 GHz2 GHz
Boost clock speed3 GHz2.9 GHz
L1 cacheno data56 KB (per core)
L2 cache4096 KB4 MB (shared)
Chip lithography28 nm14 nm
Die size245 mm293 mm2
Maximum core temperatureno data105 °C
Number of transistors2410 Millionno data
64 bit support++
Windows 11 compatibility-+

Compatibility

Information on A8-7100 and Celeron J4025 compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configurationno data1
SocketFP3Intel BGA 1090
Power consumption (TDP)19 Watt10 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A8-7100 and Celeron J4025. You'll probably need this information if you require some particular technology.

Instruction set extensions86x SSE (1, 2, 3, 3S, 4.1, 4.2, 4A),-64, AES, AVX, FMAno data
AES-NI++
FMA+-
AVX+-
FRTC+-
TrueAudio+-
PowerNow+-
PowerGating+-
Out-of-band client management+-
VirusProtect+-
HSA+-
Enhanced SpeedStep (EIST)no data+

Virtualization technologies

Virtual machine speed-up technologies supported by A8-7100 and Celeron J4025 are enumerated here.

AMD-V+-
VT-dno data+
VT-xno data+
IOMMU 2.0+-

Memory specs

Types, maximum amount and channel quantity of RAM supported by A8-7100 and Celeron J4025. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3-1600DDR4
Max memory channels2no data

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
AMD Radeon R5 GraphicsIntel UHD Graphics 600 (250 - 700 MHz)
iGPU core count4no data
Enduro+-
Switchable graphics+-
UVD+-
VCE+-

Graphics interfaces

Available interfaces and connections of A8-7100 and Celeron J4025 integrated GPUs.

DisplayPort+-
HDMI+-

Graphics API support

APIs supported by A8-7100 and Celeron J4025 integrated GPUs, sometimes API versions are included.

DirectXDirectX® 12no data
Vulkan+-

Peripherals

Specifications and connection of peripherals supported by A8-7100 and Celeron J4025.

PCIe version3.02.0
PCI Express lanesno data6

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

A8-7100 1.03
+10.8%
Celeron J4025 0.93

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A8-7100 1638
+10.9%
Celeron J4025 1477

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

A8-7100 256
Celeron J4025 329
+28.5%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

A8-7100 577
+7.1%
Celeron J4025 539

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A8-7100 1379
Celeron J4025 2337
+69.5%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A8-7100 4134
Celeron J4025 4556
+10.2%

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

A8-7100 2225
Celeron J4025 2575
+15.7%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

A8-7100 33.23
Celeron J4025 31.07
+7%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

A8-7100 2
Celeron J4025 2
+2.8%

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

A8-7100 133
Celeron J4025 148
+11.3%

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

A8-7100 44
Celeron J4025 77
+75%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

A8-7100 0.55
Celeron J4025 0.96
+74.5%

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

A8-7100 1.1
+5%
Celeron J4025 1

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

A8-7100 1417
+80.9%
Celeron J4025 783

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

A8-7100 11
+4.2%
Celeron J4025 11

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

A8-7100 56
+5.4%
Celeron J4025 53

Gaming performance

Pros & cons summary


Performance score 1.03 0.93
Recency 4 June 2014 4 November 2019
Physical cores 4 2
Threads 4 2
Chip lithography 28 nm 14 nm
Power consumption (TDP) 19 Watt 10 Watt

A8-7100 has a 10.8% higher aggregate performance score, and 100% more physical cores and 100% more threads.

Celeron J4025, on the other hand, has an age advantage of 5 years, a 100% more advanced lithography process, and 90% lower power consumption.

The A8-7100 is our recommended choice as it beats the Celeron J4025 in performance tests.

Be aware that A8-7100 is a notebook processor while Celeron J4025 is a desktop one.


Should you still have questions on choice between A8-7100 and Celeron J4025, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A8-7100
A8-7100
Intel Celeron J4025
Celeron J4025

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.3 30 votes

Rate A8-7100 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.2 129 votes

Rate Celeron J4025 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A8-7100 or Celeron J4025, agree or disagree with our judgements, or report an error or mismatch.