EPYC 4124P vs A6-9550
Primary details
Comparing A6-9550 and EPYC 4124P processor market type (desktop or notebook), architecture, sales start time and price.
Place in the ranking | not rated | 668 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | no data | 52.80 |
Market segment | Desktop processor | Server |
Power efficiency | no data | 17.06 |
Architecture codename | Bristol Ridge (2016−2019) | Raphael (2023−2024) |
Release date | 27 July 2017 (7 years ago) | 21 May 2024 (less than a year ago) |
Launch price (MSRP) | no data | $149 |
Cost-effectiveness evaluation
Performance per price, higher is better.
Detailed specifications
A6-9550 and EPYC 4124P basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.
Physical cores | 2 (Dual-core) | 4 (Quad-Core) |
Threads | 2 | 8 |
Base clock speed | 3.8 GHz | 3.8 GHz |
Boost clock speed | 4 GHz | 5.1 GHz |
L1 cache | 128 KB (per core) | 64 KB (per core) |
L2 cache | 1 MB (per core) | 1 MB (per core) |
L3 cache | 0 KB | 32 MB (shared) |
Chip lithography | 28 nm | 5 nm |
Die size | 246 mm2 | 71 mm2 |
Maximum case temperature (TCase) | 74 °C | 61 °C |
Number of transistors | 1,178 million | 6,570 million |
64 bit support | + | + |
Windows 11 compatibility | - | no data |
Unlocked multiplier | + | - |
Compatibility
Information on A6-9550 and EPYC 4124P compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.
Number of CPUs in a configuration | 1 | 1 |
Socket | AM4 | AM5 |
Power consumption (TDP) | 65 Watt | 65 Watt |
Technologies and extensions
Technological solutions and additional instructions supported by A6-9550 and EPYC 4124P. You'll probably need this information if you require some particular technology.
AES-NI | + | + |
FMA | + | - |
AVX | + | + |
Precision Boost 2 | no data | + |
Virtualization technologies
Virtual machine speed-up technologies supported by A6-9550 and EPYC 4124P are enumerated here.
AMD-V | + | + |
Memory specs
Types, maximum amount and channel quantity of RAM supported by A6-9550 and EPYC 4124P. Depending on the motherboard, higher memory frequencies may be supported.
Supported memory types | DDR4 Dual-channel | DDR5 |
Graphics specifications
General parameters of integrated GPUs, if any.
Integrated graphics card | Radeon R5 | AMD Radeon Graphics |
Peripherals
Specifications and connection of peripherals supported by A6-9550 and EPYC 4124P.
PCIe version | no data | 5.0 |
PCI Express lanes | no data | 28 |
Pros & cons summary
Recency | 27 July 2017 | 21 May 2024 |
Physical cores | 2 | 4 |
Threads | 2 | 8 |
Chip lithography | 28 nm | 5 nm |
EPYC 4124P has an age advantage of 6 years, 100% more physical cores and 300% more threads, and a 460% more advanced lithography process.
We couldn't decide between A6-9550 and EPYC 4124P. We've got no test results to judge.
Note that A6-9550 is a desktop processor while EPYC 4124P is a server/workstation one.
Should you still have questions on choice between A6-9550 and EPYC 4124P, ask them in Comments section, and we shall answer.
Similar processor comparisons
We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.