Celeron 1017U vs A6-6310

VS

Aggregate performance score

A6-6310
2014
4 cores / 4 threads, 15 Watt
1.05
+10.5%
Celeron 1017U
2013
2 cores / 2 threads, 17 Watt
0.95

A6-6310 outperforms Celeron 1017U by a moderate 11% based on our aggregate benchmark results.

Primary details

Comparing A6-6310 and Celeron 1017U processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking24352516
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesAMD A-SeriesIntel Celeron
Power efficiency6.625.29
Architecture codenameBeema (2014)Ivy Bridge (2012−2013)
Release date29 April 2014 (10 years ago)1 July 2013 (11 years ago)

Detailed specifications

A6-6310 and Celeron 1017U basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)2 (Dual-core)
Threads42
Base clock speed1.8 GHz1.6 GHz
Boost clock speed2.4 GHz1.6 GHz
Bus rateno data5 GT/s
L1 cacheno data128 KB
L2 cache2048 KB512 KB
L3 cacheno data2 MB
Chip lithography28 nm22 nm
Die size107 mm294 mm2
Maximum core temperatureno data105 °C
Number of transistors930 Millionno data
64 bit support++
Windows 11 compatibility--

Compatibility

Information on A6-6310 and Celeron 1017U compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configurationno data1
SocketFT3bFCBGA1023
Power consumption (TDP)15 Watt17 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A6-6310 and Celeron 1017U. You'll probably need this information if you require some particular technology.

Instruction set extensions86x SSE (1, 2, 3, 3S, 4.1, 4.2, 4A),-64, AES, AVXIntel® SSE4.1, Intel® SSE4.2
AES-NI+-
FMAFMA4-
AVX+-
PowerNow+-
PowerGating+-
VirusProtect+-
Enhanced SpeedStep (EIST)no data+
My WiFino data-
Turbo Boost Technologyno data-
Hyper-Threading Technologyno data-
Idle Statesno data+
Thermal Monitoring-+
Flex Memory Accessno data+
Demand Based Switchingno data-
FDIno data+
Fast Memory Accessno data+

Security technologies

A6-6310 and Celeron 1017U technologies aimed at improving security, for example, by protecting against hacks.

TXTno data-
EDBno data+
Anti-Theftno data-

Virtualization technologies

Virtual machine speed-up technologies supported by A6-6310 and Celeron 1017U are enumerated here.

AMD-V+-
VT-dno data-
VT-xno data+
EPTno data+
IOMMU 2.0+-

Memory specs

Types, maximum amount and channel quantity of RAM supported by A6-6310 and Celeron 1017U. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3-1865DDR3
Maximum memory sizeno data32 GB
Max memory channels12
Maximum memory bandwidthno data25.6 GB/s

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
AMD Radeon R4 GraphicsIntel HD Graphics for 3rd Generation Intel Processors
Enduro+-
Switchable graphics+-
UVD+-
VCE+-
Graphics max frequencyno data1 GHz

Graphics interfaces

Available interfaces and connections of A6-6310 and Celeron 1017U integrated GPUs.

Number of displays supportedno data3
eDPno data+
DisplayPort++
HDMI++
SDVOno data+
CRTno data+

Graphics API support

APIs supported by A6-6310 and Celeron 1017U integrated GPUs, sometimes API versions are included.

DirectXDirectX® 12no data
Vulkan+-

Peripherals

Specifications and connection of peripherals supported by A6-6310 and Celeron 1017U.

PCIe version2.02.0
PCI Express lanesno data16

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

A6-6310 1.05
+10.5%
Celeron 1017U 0.95

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A6-6310 1675
+11.1%
Celeron 1017U 1508

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

A6-6310 229
Celeron 1017U 263
+14.8%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

A6-6310 602
+32.6%
Celeron 1017U 454

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A6-6310 1829
Celeron 1017U 2201
+20.3%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A6-6310 5612
+35.1%
Celeron 1017U 4155

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

A6-6310 2730
+58.8%
Celeron 1017U 1719

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

A6-6310 26.64
+74.1%
Celeron 1017U 46.38

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

A6-6310 2
+49.2%
Celeron 1017U 1

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

A6-6310 0.57
Celeron 1017U 0.61
+7%

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

A6-6310 1.2
+757%
Celeron 1017U 0.1

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

A6-6310 1247
+8.4%
Celeron 1017U 1150

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

A6-6310 11
+46.6%
Celeron 1017U 8

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

A6-6310 52
+24.6%
Celeron 1017U 42

Geekbench 3 32-bit multi-core

A6-6310 3549
+53.8%
Celeron 1017U 2308

Geekbench 3 32-bit single-core

A6-6310 1233
Celeron 1017U 1367
+10.9%

Geekbench 2

A6-6310 4123
+42.6%
Celeron 1017U 2892

Gaming performance

Pros & cons summary


Performance score 1.05 0.95
Recency 29 April 2014 1 July 2013
Physical cores 4 2
Threads 4 2
Chip lithography 28 nm 22 nm
Power consumption (TDP) 15 Watt 17 Watt

A6-6310 has a 10.5% higher aggregate performance score, an age advantage of 9 months, 100% more physical cores and 100% more threads, and 13.3% lower power consumption.

Celeron 1017U, on the other hand, has a 27.3% more advanced lithography process.

The A6-6310 is our recommended choice as it beats the Celeron 1017U in performance tests.


Should you still have questions on choice between A6-6310 and Celeron 1017U, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A6-6310
A6-6310
Intel Celeron 1017U
Celeron 1017U

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.5 243 votes

Rate A6-6310 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.8 71 vote

Rate Celeron 1017U on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A6-6310 or Celeron 1017U, agree or disagree with our judgements, or report an error or mismatch.