Celeron 2955U vs A6-4400M

#ad 
Buy on Amazon
VS

Aggregate performance score

A6-4400M
2012
2 cores / 2 threads, 35 Watt
0.63
+14.5%
Celeron 2955U
2013
2 cores / 2 threads, 15 Watt
0.55

A6-4400M outperforms Celeron 2955U by a moderate 15% based on our aggregate benchmark results.

Primary details

Comparing A6-4400M and Celeron 2955U processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking27852849
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesAMD A-SeriesIntel Celeron
Power efficiency1.723.49
Architecture codenameTrinity (2012−2013)Haswell (2013−2015)
Release date15 May 2012 (12 years ago)1 September 2013 (11 years ago)

Detailed specifications

A6-4400M and Celeron 2955U basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores2 (Dual-core)2 (Dual-core)
Threads22
Base clock speed2.7 GHz1.4 GHz
Boost clock speed3.2 GHz1.4 GHz
Bus rateno data5 GT/s
L1 cache96 KB64K (per core)
L2 cache1 MB (shared)256K (per core)
L3 cache0 KB2 MB (shared)
Chip lithography32 nm22 nm
Die size246 mm2118 mm2
Maximum core temperatureno data100 °C
Maximum case temperature (TCase)no data105 °C
Number of transistors1,178 million1,400 million
64 bit support++
Windows 11 compatibility--

Compatibility

Information on A6-4400M and Celeron 2955U compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration11
SocketFS1r2FCBGA1168
Power consumption (TDP)35 Watt15 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A6-4400M and Celeron 2955U. You'll probably need this information if you require some particular technology.

Instruction set extensions86x SSE (1, 2, 3, 3S, 4.1, 4.2, 4A),-64, AES, AVX, FMAIntel® SSE4.1, Intel® SSE4.2
AES-NI+-
FMA+-
AVX+-
Enhanced SpeedStep (EIST)no data+
Turbo Boost Technologyno data-
Hyper-Threading Technologyno data-
Idle Statesno data+
Thermal Monitoring-+
Smart Responseno data-
GPIOno data+
Smart Connectno data+
FDIno data-
AMTno data9.5
Matrix Storageno data-
HD Audiono data+
RSTno data+

Security technologies

A6-4400M and Celeron 2955U technologies aimed at improving security, for example, by protecting against hacks.

TXTno data-
EDBno data+
Secure Keyno data+
OS Guardno data-
Anti-Theftno data-

Virtualization technologies

Virtual machine speed-up technologies supported by A6-4400M and Celeron 2955U are enumerated here.

AMD-V++
VT-dno data-
VT-xno data+
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by A6-4400M and Celeron 2955U. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesunknownDDR3
Maximum memory sizeno data16 GB
Max memory channelsno data2
Maximum memory bandwidthno data25.6 GB/s

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
AMD Radeon HD 7520G (496 - 685 MHz)Intel HD Graphics for 4th Generation Intel Processors
Clear Videono data+
Graphics max frequencyno data1 GHz

Graphics interfaces

Available interfaces and connections of A6-4400M and Celeron 2955U integrated GPUs.

Number of displays supportedno data3
eDPno data+
DisplayPort-+
HDMI-+

Peripherals

Specifications and connection of peripherals supported by A6-4400M and Celeron 2955U.

PCIe versionno data2.0
PCI Express lanesno data10
PCI supportno data-
USB revisionno data3.0
Total number of SATA portsno data2
Max number of SATA 6 Gb/s Portsno data2
Integrated IDEno data-
Number of USB portsno data4
Integrated LANno data-
UARTno data+

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

A6-4400M 0.63
+14.5%
Celeron 2955U 0.55

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A6-4400M 1007
+14.4%
Celeron 2955U 880

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

A6-4400M 314
+18%
Celeron 2955U 266

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

A6-4400M 398
Celeron 2955U 455
+14.3%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A6-4400M 2292
+10.8%
Celeron 2955U 2069

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A6-4400M 3407
Celeron 2955U 4000
+17.4%

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

A6-4400M 1804
+18.7%
Celeron 2955U 1520

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

A6-4400M 46.82
+13.6%
Celeron 2955U 53.2

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

A6-4400M 1
Celeron 2955U 1
+0.9%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

A6-4400M 0.8
+31.1%
Celeron 2955U 0.61

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

A6-4400M 0.7
+408%
Celeron 2955U 0.1

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

A6-4400M 8
+0.9%
Celeron 2955U 8

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

A6-4400M 39
Celeron 2955U 41
+4.9%

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

A6-4400M 1353
+28.4%
Celeron 2955U 1054

Gaming performance

Pros & cons summary


Performance score 0.63 0.55
Integrated graphics card 0.81 0.77
Recency 15 May 2012 1 September 2013
Chip lithography 32 nm 22 nm
Power consumption (TDP) 35 Watt 15 Watt

A6-4400M has a 14.5% higher aggregate performance score, and 5.2% faster integrated GPU.

Celeron 2955U, on the other hand, has an age advantage of 1 year, a 45.5% more advanced lithography process, and 133.3% lower power consumption.

The A6-4400M is our recommended choice as it beats the Celeron 2955U in performance tests.


Should you still have questions on choice between A6-4400M and Celeron 2955U, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A6-4400M
A6-4400M
Intel Celeron 2955U
Celeron 2955U

Other comparisons

We've compiled a selection of CPU comparisons, ranging from closely matched processors to other comparisons that may be of interest.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.2 189 votes

Rate A6-4400M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.7 68 votes

Rate Celeron 2955U on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A6-4400M or Celeron 2955U, agree or disagree with our judgements, or report an error or mismatch.