i5-540M vs A6-3400M

VS

Aggregate performance score

A6-3400M
2011
4 cores / 4 threads, 35 Watt
0.78
Core i5-540M
2010
2 cores / 4 threads, 35 Watt
1.18
+51.3%

Core i5-540M outperforms A6-3400M by an impressive 51% based on our aggregate benchmark results.

Primary details

Comparing A6-3400M and Core i5-540M processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking26472372
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesAMD A-SeriesIntel Core i5
Power efficiency2.033.07
Architecture codenameLlano (2011−2012)Arrandale (2010−2011)
Release date14 June 2011 (13 years ago)7 January 2010 (14 years ago)
Launch price (MSRP)no data$257

Detailed specifications

A6-3400M and Core i5-540M basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)2 (Dual-core)
Threads44
Base clock speed1.4 GHz2.53 GHz
Boost clock speed2.3 GHz3.07 GHz
Bus typeno dataDMI 1.0
Bus rateno data1 × 2.5 GT/s
Multiplierno data19
L1 cache128 KB (per core)128 KB
L2 cache1 MB (per core)512 KB
L3 cache0 KB3 MB (shared)
Chip lithography32 nm32 nm
Die size228 mm281+114 mm2
Maximum core temperatureno data105 °C
Number of transistors1,178 million382+177 Million
64 bit support++
Windows 11 compatibility--

Compatibility

Information on A6-3400M and Core i5-540M compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration11 (Uniprocessor)
SocketFS1BGA1288,PGA988
Power consumption (TDP)35 Watt35 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A6-3400M and Core i5-540M. You'll probably need this information if you require some particular technology.

Instruction set extensions3DNow!, MMX, SSE, SSE2, SSE3, SSE4a, Radeon HD 6480GIntel® SSE4.1, Intel® SSE4.2
AES-NI-+
FMA-+
vProno data+
Enhanced SpeedStep (EIST)no data+
Turbo Boost Technologyno data+
Hyper-Threading Technologyno data+
Idle Statesno data+
Thermal Monitoring-+
Flex Memory Accessno data+
PAEno data36 Bit
FDIno data+
Fast Memory Accessno data+

Security technologies

A6-3400M and Core i5-540M technologies aimed at improving security, for example, by protecting against hacks.

TXTno data+
EDBno data+

Virtualization technologies

Virtual machine speed-up technologies supported by A6-3400M and Core i5-540M are enumerated here.

AMD-V+-
VT-dno data+
VT-xno data+
EPTno data+

Memory specs

Types, maximum amount and channel quantity of RAM supported by A6-3400M and Core i5-540M. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3DDR3
Maximum memory sizeno data8 GB
Max memory channelsno data2
Maximum memory bandwidthno data17.051 GB/s

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics cardAMD Radeon HD 6520GIntel® HD Graphics for Previous Generation Intel® Processors
Clear Videono data+
Clear Video HDno data+
Graphics max frequencyno data766 MHz

Graphics interfaces

Available interfaces and connections of A6-3400M and Core i5-540M integrated GPUs.

Number of displays supportedno data2

Peripherals

Specifications and connection of peripherals supported by A6-3400M and Core i5-540M.

PCIe versionno data2.0
PCI Express lanesno data16

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

A6-3400M 0.78
i5-540M 1.18
+51.3%

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A6-3400M 1191
i5-540M 1808
+51.8%

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

A6-3400M 211
i5-540M 374
+77.3%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

A6-3400M 522
i5-540M 718
+37.5%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A6-3400M 1512
i5-540M 3133
+107%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A6-3400M 4922
i5-540M 7031
+42.8%

3DMark06 CPU

3DMark06 is a discontinued DirectX 9 benchmark suite from Futuremark. Its CPU part contains two scenarios, one dedicated to artificial intelligence pathfinding, another to game physics using PhysX package.

A6-3400M 2135
i5-540M 2826
+32.4%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

A6-3400M 26
i5-540M 18.5
+40.5%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

A6-3400M 2
i5-540M 2
+24.2%

Gaming performance

Pros & cons summary


Performance score 0.78 1.18
Recency 14 June 2011 7 January 2010
Physical cores 4 2

A6-3400M has an age advantage of 1 year, and 100% more physical cores.

i5-540M, on the other hand, has a 51.3% higher aggregate performance score.

The Core i5-540M is our recommended choice as it beats the A6-3400M in performance tests.


Should you still have questions on choice between A6-3400M and Core i5-540M, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A6-3400M
A6-3400M
Intel Core i5-540M
Core i5-540M

Similar processor comparisons

We picked several similar comparisons of processors in the same market segment and performance relatively close to those reviewed on this page.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


3.6 170 votes

Rate A6-3400M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.7 162 votes

Rate Core i5-540M on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A6-3400M or Core i5-540M, agree or disagree with our judgements, or report an error or mismatch.