Athlon Silver 3050e vs A4-5000

VS

Aggregate performance score

A4-5000
2013
4 cores / 4 threads, 15 Watt
0.81
Athlon Silver 3050e
2020
2 cores / 4 threads, 6 Watt
1.83
+126%

Athlon Silver 3050e outperforms A4-5000 by a whopping 126% based on our aggregate benchmark results.

Primary details

Comparing A4-5000 and Athlon Silver 3050e processor market type (desktop or notebook), architecture, sales start time and price.

Place in the ranking26112006
Place by popularitynot in top-100not in top-100
Market segmentLaptopLaptop
SeriesAMD A-SeriesAMD Raven Ridge (Ryzen 2000 APU)
Power efficiency5.1529.07
Architecture codenameKabini (2013−2014)Dali (Zen) (2020)
Release date23 May 2013 (11 years ago)1 June 2020 (4 years ago)

Detailed specifications

A4-5000 and Athlon Silver 3050e basic parameters such as number of cores, number of threads, base frequency and turbo boost clock, lithography, cache size and multiplier lock state. These parameters indirectly say of CPU speed, though for more precise assessment you have to consider their test results.

Physical cores4 (Quad-Core)2 (Dual-core)
Threads44
Base clock speedno data1.4 GHz
Boost clock speed1.5 GHz2.8 GHz
L1 cacheno data192 KB
L2 cache2048 KB1 MB
L3 cache0 KB4 MB
Chip lithography28 nm14 nm
Die size246 mm2no data
Maximum case temperature (TCase)90 °Cno data
Number of transistors1,178 millionno data
64 bit support++
Windows 11 compatibility-+

Compatibility

Information on A4-5000 and Athlon Silver 3050e compatibility with other computer components: motherboard (look for socket type), power supply unit (look for power consumption) etc. Useful when planning a future computer configuration or upgrading an existing one. Note that power consumption of some processors can well exceed their nominal TDP, even without overclocking. Some can even double their declared thermals given that the motherboard allows to tune the CPU power parameters.

Number of CPUs in a configuration1no data
SocketFT3FP5
Power consumption (TDP)15 Watt6 Watt

Technologies and extensions

Technological solutions and additional instructions supported by A4-5000 and Athlon Silver 3050e. You'll probably need this information if you require some particular technology.

Instruction set extensions86x SSE (1, 2, 3, 3S, 4.1, 4.2, 4A),-64, AES, AVXMMX, SSE, SSE2, SSE3, SSSE3, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, BMI2, ABM, FMA, ADX, SMEP, SMAP, SMT, CPB, AES-NI, RDRAND, RDSEED, SHA, SME
AES-NI++
FMAFMA4+
AVX++
PowerNow+-
PowerGating+-
VirusProtect+-

Virtualization technologies

Virtual machine speed-up technologies supported by A4-5000 and Athlon Silver 3050e are enumerated here.

AMD-V+-
IOMMU 2.0+-

Memory specs

Types, maximum amount and channel quantity of RAM supported by A4-5000 and Athlon Silver 3050e. Depending on the motherboard, higher memory frequencies may be supported.

Supported memory typesDDR3DDR4
Max memory channels1no data

Graphics specifications

General parameters of integrated GPUs, if any.

Integrated graphics card
Compare
AMD Radeon HD 8330AMD Radeon RX Vega 3 ( - 1000 MHz)
Enduro+-
Switchable graphics+-
UVD+-
VCE+-

Graphics interfaces

Available interfaces and connections of A4-5000 and Athlon Silver 3050e integrated GPUs.

DisplayPort+-
HDMI+-

Graphics API support

APIs supported by A4-5000 and Athlon Silver 3050e integrated GPUs, sometimes API versions are included.

DirectXDirectX® 12no data
Vulkan+-

Peripherals

Specifications and connection of peripherals supported by A4-5000 and Athlon Silver 3050e.

PCIe version2.0no data

Synthetic benchmark performance

Various benchmark results of the processors in comparison. Overall score is measured in points in 0-100 range, higher is better.


Combined synthetic benchmark score

This is our combined benchmark performance rating. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

A4-5000 0.81
Athlon Silver 3050e 1.83
+126%

Passmark

Passmark CPU Mark is a widespread benchmark, consisting of 8 different types of workload, including integer and floating point math, extended instructions, compression, encryption and physics calculation. There is also one separate single-threaded scenario measuring single-core performance.

A4-5000 1292
Athlon Silver 3050e 2939
+127%

GeekBench 5 Single-Core

GeekBench 5 Single-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses only a single CPU core.

A4-5000 158
Athlon Silver 3050e 709
+349%

GeekBench 5 Multi-Core

GeekBench 5 Multi-Core is a cross-platform application developed in the form of CPU tests that independently recreate certain real-world tasks with which to accurately measure performance. This version uses all available CPU cores.

A4-5000 470
Athlon Silver 3050e 1366
+191%

Cinebench 10 32-bit single-core

Cinebench R10 is an ancient ray tracing benchmark for processors by Maxon, authors of Cinema 4D. Its single core version uses just one CPU thread to render a futuristic looking motorcycle.

A4-5000 1207
Athlon Silver 3050e 3339
+177%

Cinebench 10 32-bit multi-core

Cinebench Release 10 Multi Core is a variant of Cinebench R10 using all the processor threads. Possible number of threads is limited by 16 in this version.

A4-5000 4165
Athlon Silver 3050e 6780
+62.8%

wPrime 32

wPrime 32M is a math multi-thread processor test, which calculates square roots of first 32 million integer numbers. Its result is measured in seconds, so that the less is benchmark result, the faster the processor.

A4-5000 38.2
Athlon Silver 3050e 18.99
+101%

Cinebench 11.5 64-bit multi-core

Cinebench Release 11.5 Multi Core is a variant of Cinebench R11.5 which uses all the processor threads. A maximum of 64 threads is supported in this version.

A4-5000 1
Athlon Silver 3050e 3
+69.6%

Cinebench 15 64-bit multi-core

Cinebench Release 15 Multi Core is a variant of Cinebench R15 which uses all the processor threads.

A4-5000 119
Athlon Silver 3050e 227
+90.3%

Cinebench 15 64-bit single-core

Cinebench R15 (standing for Release 15) is a benchmark made by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version (sometimes called Single-Thread) only uses a single processor thread to render a room full of reflective spheres and light sources.

A4-5000 33
Athlon Silver 3050e 102
+209%

Cinebench 11.5 64-bit single-core

Cinebench R11.5 is an old benchmark by Maxon, authors of Cinema 4D. It was superseded by later versions of Cinebench, which use more modern variants of Cinema 4D engine. The Single Core version loads a single thread with ray tracing to render a glossy room full of crystal spheres and light sources.

A4-5000 0.39
Athlon Silver 3050e 1.18
+203%

TrueCrypt AES

TrueCrypt is a discontinued piece of software that was widely used for on-the-fly-encryption of disk partitions, now superseded by VeraCrypt. It contains several embedded performance tests, one of them being TrueCrypt AES, which measures data encryption speed using AES algorithm. Result is encryption speed in gigabytes per second.

A4-5000 0.9
Athlon Silver 3050e 1.3
+41.3%

x264 encoding pass 2

x264 Pass 2 is a slower variant of x264 video compression that produces a variable bit rate output file, which results in better quality since the higher bit rate is used when it is needed more. Benchmark result is still measured in frames per second.  

A4-5000 9
Athlon Silver 3050e 14
+58.3%

x264 encoding pass 1

x264 version 4.0 is a video encoding benchmark uses MPEG 4 x264 compression method to compress a sample HD (720p) video. Pass 1 is a faster variant that produces a constant bit rate output file. Its result is measured in frames per second, which means how many frames of the source video file were encoded per second.  

A4-5000 41
Athlon Silver 3050e 70
+69.7%

WinRAR 4.0

WinRAR 4.0 is an outdated version of a popular file archiver. It contains an internal speed test, using 'Best' setting of RAR compression on large chunks of randomly generated data. Its results are measured in kilobytes per second.

A4-5000 1078
Athlon Silver 3050e 1403
+30.1%

Gaming performance

Pros & cons summary


Performance score 0.81 1.83
Integrated graphics card 0.69 2.99
Recency 23 May 2013 1 June 2020
Physical cores 4 2
Chip lithography 28 nm 14 nm
Power consumption (TDP) 15 Watt 6 Watt

A4-5000 has 100% more physical cores.

Athlon Silver 3050e, on the other hand, has a 125.9% higher aggregate performance score, 333.3% faster integrated GPU, an age advantage of 7 years, a 100% more advanced lithography process, and 150% lower power consumption.

The Athlon Silver 3050e is our recommended choice as it beats the A4-5000 in performance tests.


Should you still have questions on choice between A4-5000 and Athlon Silver 3050e, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite CPU.


AMD A4-5000
A4-5000
AMD Athlon Silver 3050e
Athlon Silver 3050e

Other comparisons

We've compiled a selection of CPU comparisons, ranging from closely matched processors to other comparisons that may be of interest.

Community ratings

Here you can see how users rate the processors, as well as rate them yourself.


2.8 372 votes

Rate A4-5000 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
2.1 377 votes

Rate Athlon Silver 3050e on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about A4-5000 or Athlon Silver 3050e, agree or disagree with our judgements, or report an error or mismatch.