Radeon R7 384 Cores (Kaveri Desktop) vs R9 290

#ad 
Buy on Amazon
VS

Aggregate performance score

We've compared Radeon R9 290 and Radeon R7 384 Cores (Kaveri Desktop), covering specs and all relevant benchmarks.

R9 290
2013
4 GB GDDR5, 275 Watt
21.05
+663%

R9 290 outperforms R7 384 Cores (Kaveri Desktop) by a whopping 663% based on our aggregate benchmark results.

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking264800
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation8.06no data
Power efficiency5.27no data
ArchitectureGCN 2.0 (2013−2017)GCN (2012−2015)
GPU code nameHawaiiKaveri Spectre
Market segmentDesktopDesktop
Release date5 November 2013 (11 years ago)14 January 2014 (11 years ago)
Launch price (MSRP)$399 no data

Cost-effectiveness evaluation

Performance to price ratio. The higher, the better.

no data

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores2560384
Core clock speed947 MHz720 MHz
Number of transistors6,200 millionno data
Manufacturing process technology28 nm28 nm
Power consumption (TDP)275 Wattno data
Texture fill rate151.5no data
Floating-point processing power4.849 TFLOPSno data
ROPs64no data
TMUs160no data

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

InterfacePCIe 3.0 x16no data
Length275 mmno data
Width2-slotno data
Supplementary power connectors1x 6-pin + 1x 8-pinno data

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR5no data
Maximum RAM amount4 GBno data
Memory bus width512 Bitno data
Memory clock speed1250 MHzno data
Memory bandwidth320.0 GB/sno data
Shared memory-+

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors2x DVI, 1x HDMI, 1x DisplayPortno data
HDMI+-

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 (12_0)12 (FL 12_0)
Shader Model6.3no data
OpenGL4.6no data
OpenCL2.0no data
Vulkan1.2.131-

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.


Combined synthetic benchmark score

This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

R9 290 21.05
+663%
R7 384 Cores (Kaveri Desktop) 2.76

3DMark Fire Strike Graphics

Fire Strike is a DirectX 11 benchmark for gaming PCs. It features two separate tests displaying a fight between a humanoid and a fiery creature made of lava. Using 1920x1080 resolution, Fire Strike shows off some realistic graphics and is quite taxing on hardware.

R9 290 11860
+744%
R7 384 Cores (Kaveri Desktop) 1406

Gaming performance

Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.

Average FPS across all PC games

Here are the average frames per second in a large set of popular games across different resolutions:

Full HD110−120
+633%
15
−633%

Cost per frame, $

1080p3.63no data

FPS performance in popular games

Full HD
Low Preset

Counter-Strike 2 10−11
+0%
10−11
+0%
Cyberpunk 2077 6−7
+0%
6−7
+0%
Elden Ring 5−6
+0%
5−6
+0%

Full HD
Medium Preset

Battlefield 5 7−8
+0%
7−8
+0%
Counter-Strike 2 10−11
+0%
10−11
+0%
Cyberpunk 2077 6−7
+0%
6−7
+0%
Forza Horizon 4 12−14
+0%
12−14
+0%
Metro Exodus 4−5
+0%
4−5
+0%
Red Dead Redemption 2 10−11
+0%
10−11
+0%

Full HD
High Preset

Battlefield 5 7−8
+0%
7−8
+0%
Counter-Strike 2 10−11
+0%
10−11
+0%
Cyberpunk 2077 6−7
+0%
6−7
+0%
Dota 2 6
+0%
6
+0%
Elden Ring 5−6
+0%
5−6
+0%
Far Cry 5 16−18
+0%
16−18
+0%
Fortnite 14−16
+0%
14−16
+0%
Forza Horizon 4 12−14
+0%
12−14
+0%
Grand Theft Auto V 9
+0%
9
+0%
Metro Exodus 4−5
+0%
4−5
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 24−27
+0%
24−27
+0%
Red Dead Redemption 2 10−11
+0%
10−11
+0%
The Witcher 3: Wild Hunt 10−12
+0%
10−12
+0%
World of Tanks 50−55
+0%
50−55
+0%

Full HD
Ultra Preset

Battlefield 5 7−8
+0%
7−8
+0%
Counter-Strike 2 10−11
+0%
10−11
+0%
Cyberpunk 2077 6−7
+0%
6−7
+0%
Dota 2 7−8
+0%
7−8
+0%
Far Cry 5 16−18
+0%
16−18
+0%
Forza Horizon 4 12−14
+0%
12−14
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 24−27
+0%
24−27
+0%

1440p
High Preset

Dota 2 0−1 0−1
Elden Ring 2−3
+0%
2−3
+0%
Grand Theft Auto V 1−2
+0%
1−2
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 18−20
+0%
18−20
+0%
Red Dead Redemption 2 2−3
+0%
2−3
+0%
World of Tanks 18−20
+0%
18−20
+0%

1440p
Ultra Preset

Battlefield 5 2−3
+0%
2−3
+0%
Counter-Strike 2 9−10
+0%
9−10
+0%
Cyberpunk 2077 3−4
+0%
3−4
+0%
Far Cry 5 7−8
+0%
7−8
+0%
Forza Horizon 4 0−1 0−1
The Witcher 3: Wild Hunt 4−5
+0%
4−5
+0%
Valorant 9−10
+0%
9−10
+0%

4K
High Preset

Dota 2 16−18
+0%
16−18
+0%
Elden Ring 1−2
+0%
1−2
+0%
Grand Theft Auto V 14−16
+0%
14−16
+0%
PLAYERUNKNOWN'S BATTLEGROUNDS 8−9
+0%
8−9
+0%
Red Dead Redemption 2 1−2
+0%
1−2
+0%
The Witcher 3: Wild Hunt 14−16
+0%
14−16
+0%

4K
Ultra Preset

Battlefield 5 2−3
+0%
2−3
+0%
Cyberpunk 2077 1−2
+0%
1−2
+0%
Dota 2 16−18
+0%
16−18
+0%
Far Cry 5 2−3
+0%
2−3
+0%
Fortnite 1−2
+0%
1−2
+0%
Valorant 3−4
+0%
3−4
+0%

This is how R9 290 and R7 384 Cores (Kaveri Desktop) compete in popular games:

  • R9 290 is 633% faster in 1080p

All in all, in popular games:

  • there's a draw in 53 tests (100%)

Pros & cons summary


Performance score 21.05 2.76
Recency 5 November 2013 14 January 2014

R9 290 has a 662.7% higher aggregate performance score.

R7 384 Cores (Kaveri Desktop), on the other hand, has an age advantage of 2 months.

The Radeon R9 290 is our recommended choice as it beats the Radeon R7 384 Cores (Kaveri Desktop) in performance tests.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


AMD Radeon R9 290
Radeon R9 290
AMD Radeon R7 384 Cores (Kaveri Desktop)
Radeon R7 384 Cores (Kaveri Desktop)

Other comparisons

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


4.1 575 votes

Rate Radeon R9 290 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.9 21 vote

Rate Radeon R7 384 Cores (Kaveri Desktop) on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.