Radeon R7 M260 vs R5 M320
Aggregate performance score
We've compared Radeon R5 M320 and Radeon R7 M260, covering specs and all relevant benchmarks.
R7 M260 outperforms R5 M320 by a moderate 10% based on our aggregate benchmark results.
Primary details
GPU architecture, market segment, value for money and other general parameters compared.
Place in the ranking | 1064 | 1030 |
Place by popularity | not in top-100 | not in top-100 |
Cost-effectiveness evaluation | no data | 0.02 |
Architecture | GCN 1.0 (2011−2020) | GCN 3.0 (2014−2019) |
GPU code name | Jet | Topaz |
Market segment | Laptop | Laptop |
Release date | 5 May 2015 (9 years ago) | 11 June 2014 (10 years ago) |
Launch price (MSRP) | no data | $799 |
Cost-effectiveness evaluation
Performance to price ratio. The higher, the better.
Detailed specifications
General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.
Pipelines / CUDA cores | 320 | 384 |
Compute units | 5 | 6 |
Core clock speed | 780 MHz | 940 MHz |
Boost clock speed | 855 MHz | 980 MHz |
Number of transistors | 690 million | 1,550 million |
Manufacturing process technology | 28 nm | 28 nm |
Power consumption (TDP) | unknown | no data |
Texture fill rate | 17.10 | 23.52 |
Floating-point processing power | 0.5472 TFLOPS | 0.7526 TFLOPS |
ROPs | 8 | 8 |
TMUs | 20 | 24 |
Form factor & compatibility
Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).
Laptop size | no data | medium sized |
Bus support | PCIe 3.0 | PCIe 3.0 x8 |
Interface | PCIe 3.0 x8 | PCIe 3.0 x8 |
Supplementary power connectors | no data | None |
VRAM capacity and type
Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.
Memory type | DDR3 | DDR3 |
Maximum RAM amount | 4 GB | 4 GB |
Memory bus width | 64 Bit | 128 Bit |
Memory clock speed | 1000 MHz | 900 MHz |
Memory bandwidth | 16 GB/s | 14.4 GB/s |
Shared memory | - | - |
Connectivity and outputs
Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.
Display Connectors | No outputs | No outputs |
Supported technologies
Supported technological solutions. This information will prove useful if you need some particular technology for your purposes.
FreeSync | - | + |
HD3D | + | + |
PowerTune | + | + |
DualGraphics | + | + |
ZeroCore | + | + |
Switchable graphics | + | + |
API compatibility
List of supported 3D and general-purpose computing APIs, including their specific versions.
DirectX | DirectX® 12 | DirectX® 12 |
Shader Model | 5.1 | 6.3 |
OpenGL | 4.4 | 4.3 |
OpenCL | Not Listed | 2.0 |
Vulkan | + | - |
Mantle | + | + |
Synthetic benchmark performance
Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.
Combined synthetic benchmark score
This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.
Passmark
This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.
3DMark 11 Performance GPU
3DMark 11 is an obsolete DirectX 11 benchmark by Futuremark. It used four tests based on two scenes, one being few submarines exploring the submerged wreck of a sunken ship, the other is an abandoned temple deep in the jungle. All the tests are heavy with volumetric lighting and tessellation, and despite being done in 1280x720 resolution, are relatively taxing. Discontinued in January 2020, 3DMark 11 is now superseded by Time Spy.
3DMark Cloud Gate GPU
Cloud Gate is an outdated DirectX 11 feature level 10 benchmark that was used for home PCs and basic notebooks. It displays a few scenes of some weird space teleportation device launching spaceships into unknown, using fixed resolution of 1280x720. Just like Ice Storm benchmark, it has been discontinued in January 2020 and replaced by 3DMark Night Raid.
Gaming performance
Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.
Average FPS across all PC games
Here are the average frames per second in a large set of popular games across different resolutions:
Full HD | 10−12
−30%
| 13
+30%
|
Cost per frame, $
1080p | no data | 61.46 |
FPS performance in popular games
Full HD
Low Preset
Cyberpunk 2077 | 3−4
−33.3%
|
4−5
+33.3%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 5−6
−20%
|
6−7
+20%
|
Call of Duty: Modern Warfare | 4−5
+0%
|
4−5
+0%
|
Cyberpunk 2077 | 3−4
−33.3%
|
4−5
+33.3%
|
Far Cry 5 | 1−2
+0%
|
1−2
+0%
|
Far Cry New Dawn | 3−4
+0%
|
3−4
+0%
|
Forza Horizon 4 | 1−2
−100%
|
2−3
+100%
|
Hitman 3 | 5−6
−20%
|
6−7
+20%
|
Horizon Zero Dawn | 14−16
+0%
|
14−16
+0%
|
Red Dead Redemption 2 | 2−3
+0%
|
2−3
+0%
|
Shadow of the Tomb Raider | 7−8
−14.3%
|
8−9
+14.3%
|
Watch Dogs: Legion | 30−35
−3.1%
|
30−35
+3.1%
|
Full HD
High Preset
Assassin's Creed Odyssey | 5−6
−20%
|
6−7
+20%
|
Call of Duty: Modern Warfare | 4−5
+0%
|
4−5
+0%
|
Cyberpunk 2077 | 3−4
−33.3%
|
4−5
+33.3%
|
Far Cry 5 | 1−2
+0%
|
1−2
+0%
|
Far Cry New Dawn | 3−4
+0%
|
3−4
+0%
|
Forza Horizon 4 | 1−2
−100%
|
2−3
+100%
|
Hitman 3 | 5−6
−20%
|
6−7
+20%
|
Horizon Zero Dawn | 14−16
+0%
|
14−16
+0%
|
Red Dead Redemption 2 | 2−3
+0%
|
2−3
+0%
|
Shadow of the Tomb Raider | 7−8
−14.3%
|
8−9
+14.3%
|
The Witcher 3: Wild Hunt | 10−12
+0%
|
10−12
+0%
|
Watch Dogs: Legion | 30−35
−3.1%
|
30−35
+3.1%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 5−6
−20%
|
6−7
+20%
|
Call of Duty: Modern Warfare | 4−5
+0%
|
4−5
+0%
|
Cyberpunk 2077 | 3−4
−33.3%
|
4−5
+33.3%
|
Far Cry 5 | 1−2
+0%
|
1−2
+0%
|
Forza Horizon 4 | 1−2
−100%
|
2−3
+100%
|
Hitman 3 | 5−6
−20%
|
6−7
+20%
|
Horizon Zero Dawn | 14−16
+0%
|
14−16
+0%
|
Shadow of the Tomb Raider | 7−8
−14.3%
|
8−9
+14.3%
|
The Witcher 3: Wild Hunt | 10−12
+267%
|
3
−267%
|
Watch Dogs: Legion | 30−35
−3.1%
|
30−35
+3.1%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 2−3
+0%
|
2−3
+0%
|
1440p
High Preset
Battlefield 5 | 1−2
+0%
|
1−2
+0%
|
Far Cry New Dawn | 2−3
+0%
|
2−3
+0%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 1−2
+0%
|
1−2
+0%
|
Cyberpunk 2077 | 1−2
+0%
|
1−2
+0%
|
Far Cry 5 | 1−2
+0%
|
1−2
+0%
|
Hitman 3 | 7−8
+0%
|
7−8
+0%
|
Horizon Zero Dawn | 4−5
+0%
|
4−5
+0%
|
The Witcher 3: Wild Hunt | 0−1 | 0−1 |
Watch Dogs: Legion | 5−6
−20%
|
6−7
+20%
|
1440p
Epic Preset
Red Dead Redemption 2 | 4−5
+0%
|
4−5
+0%
|
4K
High Preset
Far Cry New Dawn | 0−1 | 0−1 |
4K
Ultra Preset
Assassin's Creed Odyssey | 1−2
+0%
|
1−2
+0%
|
Assassin's Creed Valhalla | 1−2
+0%
|
1−2
+0%
|
Call of Duty: Modern Warfare | 0−1 | 0−1 |
Far Cry 5 | 0−1 | 0−1 |
4K
Epic Preset
Red Dead Redemption 2 | 2−3
−50%
|
3−4
+50%
|
1440p
Ultra Preset
Call of Duty: Modern Warfare | 0−1 | 0−1 |
This is how R5 M320 and R7 M260 compete in popular games:
- R7 M260 is 30% faster in 1080p
Here's the range of performance differences observed across popular games:
- in The Witcher 3: Wild Hunt, with 1080p resolution and the Ultra Preset, the R5 M320 is 267% faster.
- in Forza Horizon 4, with 1080p resolution and the Medium Preset, the R7 M260 is 100% faster.
All in all, in popular games:
- R5 M320 is ahead in 1 test (2%)
- R7 M260 is ahead in 21 test (45%)
- there's a draw in 25 tests (53%)
Pros & cons summary
Performance score | 1.18 | 1.30 |
Recency | 5 May 2015 | 11 June 2014 |
R5 M320 has an age advantage of 10 months.
R7 M260, on the other hand, has a 10.2% higher aggregate performance score.
The Radeon R7 M260 is our recommended choice as it beats the Radeon R5 M320 in performance tests.
Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.
Comparisons with similar GPUs
We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.