GeForce MX250 vs Quadro RTX 4000

VS

Aggregate performance score

We've compared Quadro RTX 4000 with GeForce MX250, including specs and performance data.

RTX 4000
2018
8 GB GDDR6, 160 Watt
39.71
+536%

RTX 4000 outperforms MX250 by a whopping 536% based on our aggregate benchmark results.

Primary details

GPU architecture, market segment, value for money and other general parameters compared.

Place in the ranking111580
Place by popularitynot in top-100not in top-100
Cost-effectiveness evaluation36.34no data
Power efficiency17.1343.07
ArchitectureTuring (2018−2022)Pascal (2016−2021)
GPU code nameTU104GP108B
Market segmentWorkstationLaptop
Release date13 November 2018 (6 years ago)20 February 2019 (5 years ago)
Launch price (MSRP)$899 no data

Cost-effectiveness evaluation

Performance to price ratio. The higher, the better.

no data

Detailed specifications

General parameters such as number of shaders, GPU core base clock and boost clock speeds, manufacturing process, texturing and calculation speed. Note that power consumption of some graphics cards can well exceed their nominal TDP, especially when overclocked.

Pipelines / CUDA cores2304384
Core clock speed1005 MHz937 MHz
Boost clock speed1545 MHz1038 MHz
Number of transistors13,600 million1,800 million
Manufacturing process technology12 nm14 nm
Power consumption (TDP)160 Watt10 Watt
Texture fill rate222.524.91
Floating-point processing power7.119 TFLOPS0.7972 TFLOPS
ROPs6416
TMUs14424
Tensor Cores288no data
Ray Tracing Cores36no data

Form factor & compatibility

Information on compatibility with other computer components. Useful when choosing a future computer configuration or upgrading an existing one. For desktop graphics cards it's interface and bus (motherboard compatibility), additional power connectors (power supply compatibility).

Laptop sizeno datalarge
InterfacePCIe 3.0 x16PCIe 3.0 x4
Length241 mmno data
Width1-slotno data
Supplementary power connectors1x 8-pinNone

VRAM capacity and type

Parameters of VRAM installed: its type, size, bus, clock and resulting bandwidth. Integrated GPUs have no dedicated video RAM and use a shared part of system RAM.

Memory typeGDDR6GDDR5
Maximum RAM amount8 GB2 GB
Memory bus width256 Bit64 Bit
Memory clock speed1625 MHz1502 MHz
Memory bandwidth416.0 GB/s48.06 GB/s
Shared memory--

Connectivity and outputs

Types and number of video connectors present on the reviewed GPUs. As a rule, data in this section is precise only for desktop reference ones (so-called Founders Edition for NVIDIA chips). OEM manufacturers may change the number and type of output ports, while for notebook cards availability of certain video outputs ports depends on the laptop model rather than on the card itself.

Display Connectors3x DisplayPort, 1x USB Type-CPortable Device Dependent

API compatibility

List of supported 3D and general-purpose computing APIs, including their specific versions.

DirectX12 Ultimate (12_1)12 (12_1)
Shader Model6.56.7 (6.4)
OpenGL4.64.6
OpenCL1.23.0
Vulkan1.2.1311.3
CUDA7.56.1

Synthetic benchmark performance

Non-gaming benchmark results comparison. The combined score is measured on a 0-100 point scale.


Combined synthetic benchmark score

This is our combined benchmark score. We are regularly improving our combining algorithms, but if you find some perceived inconsistencies, feel free to speak up in comments section, we usually fix problems quickly.

RTX 4000 39.71
+536%
GeForce MX250 6.24

Passmark

This is the most ubiquitous GPU benchmark. It gives the graphics card a thorough evaluation under various types of load, providing four separate benchmarks for Direct3D versions 9, 10, 11 and 12 (the last being done in 4K resolution if possible), and few more tests engaging DirectCompute capabilities.

RTX 4000 15282
+536%
GeForce MX250 2402

GeekBench 5 OpenCL

Geekbench 5 is a widespread graphics card benchmark combined from 11 different test scenarios. All these scenarios rely on direct usage of GPU's processing power, no 3D rendering is involved. This variation uses OpenCL API by Khronos Group.

RTX 4000 85879
+825%
GeForce MX250 9280

GeekBench 5 Vulkan

Geekbench 5 is a widespread graphics card benchmark combined from 11 different test scenarios. All these scenarios rely on direct usage of GPU's processing power, no 3D rendering is involved. This variation uses Vulkan API by AMD & Khronos Group.

RTX 4000 78775
+739%
GeForce MX250 9392

GeekBench 5 CUDA

Geekbench 5 is a widespread graphics card benchmark combined from 11 different test scenarios. All these scenarios rely on direct usage of GPU's processing power, no 3D rendering is involved. This variation uses CUDA API by NVIDIA.

RTX 4000 94250
+868%
GeForce MX250 9734

Gaming performance

Let's see how good the compared graphics cards are for gaming. Particular gaming benchmark results are measured in FPS.

Average FPS across all PC games

Here are the average frames per second in a large set of popular games across different resolutions:

Full HD140−150
+536%
22
−536%

Cost per frame, $

1080p6.42no data

FPS performance in popular games

Full HD
Low Preset

Cyberpunk 2077 14
+0%
14
+0%

Full HD
Medium Preset

Assassin's Creed Odyssey 19
+0%
19
+0%
Assassin's Creed Valhalla 13
+0%
13
+0%
Battlefield 5 21
+0%
21
+0%
Call of Duty: Modern Warfare 18
+0%
18
+0%
Cyberpunk 2077 11
+0%
11
+0%
Far Cry 5 22
+0%
22
+0%
Far Cry New Dawn 27
+0%
27
+0%
Forza Horizon 4 46
+0%
46
+0%
Hitman 3 16
+0%
16
+0%
Horizon Zero Dawn 118
+0%
118
+0%
Metro Exodus 25
+0%
25
+0%
Red Dead Redemption 2 28
+0%
28
+0%
Shadow of the Tomb Raider 35
+0%
35
+0%
Watch Dogs: Legion 76
+0%
76
+0%

Full HD
High Preset

Assassin's Creed Odyssey 24
+0%
24
+0%
Assassin's Creed Valhalla 8−9
+0%
8−9
+0%
Battlefield 5 17
+0%
17
+0%
Call of Duty: Modern Warfare 17
+0%
17
+0%
Cyberpunk 2077 10−11
+0%
10−11
+0%
Far Cry 5 19
+0%
19
+0%
Far Cry New Dawn 17
+0%
17
+0%
Forza Horizon 4 43
+0%
43
+0%
Hitman 3 16
+0%
16
+0%
Horizon Zero Dawn 115
+0%
115
+0%
Metro Exodus 19
+0%
19
+0%
Red Dead Redemption 2 16
+0%
16
+0%
Shadow of the Tomb Raider 22
+0%
22
+0%
The Witcher 3: Wild Hunt 20−22
+0%
20−22
+0%
Watch Dogs: Legion 71
+0%
71
+0%

Full HD
Ultra Preset

Assassin's Creed Odyssey 7
+0%
7
+0%
Assassin's Creed Valhalla 8−9
+0%
8−9
+0%
Call of Duty: Modern Warfare 12
+0%
12
+0%
Cyberpunk 2077 10−11
+0%
10−11
+0%
Far Cry 5 13
+0%
13
+0%
Forza Horizon 4 16
+0%
16
+0%
Hitman 3 12−14
+0%
12−14
+0%
Horizon Zero Dawn 16
+0%
16
+0%
Shadow of the Tomb Raider 16
+0%
16
+0%
The Witcher 3: Wild Hunt 12
+0%
12
+0%
Watch Dogs: Legion 50−55
+0%
50−55
+0%

Full HD
Epic Preset

Red Dead Redemption 2 18
+0%
18
+0%

1440p
High Preset

Battlefield 5 12−14
+0%
12−14
+0%
Far Cry New Dawn 10−11
+0%
10−11
+0%

1440p
Ultra Preset

Assassin's Creed Odyssey 6−7
+0%
6−7
+0%
Assassin's Creed Valhalla 1−2
+0%
1−2
+0%
Call of Duty: Modern Warfare 6−7
+0%
6−7
+0%
Cyberpunk 2077 3−4
+0%
3−4
+0%
Far Cry 5 7−8
+0%
7−8
+0%
Forza Horizon 4 20−22
+0%
20−22
+0%
Hitman 3 10−11
+0%
10−11
+0%
Horizon Zero Dawn 14−16
+0%
14−16
+0%
Metro Exodus 6−7
+0%
6−7
+0%
Shadow of the Tomb Raider 2−3
+0%
2−3
+0%
The Witcher 3: Wild Hunt 5−6
+0%
5−6
+0%
Watch Dogs: Legion 40−45
+0%
40−45
+0%

1440p
Epic Preset

Red Dead Redemption 2 10−12
+0%
10−12
+0%

4K
High Preset

Battlefield 5 5−6
+0%
5−6
+0%
Far Cry New Dawn 4−5
+0%
4−5
+0%
Hitman 3 2−3
+0%
2−3
+0%
Horizon Zero Dawn 16−18
+0%
16−18
+0%
Metro Exodus 3−4
+0%
3−4
+0%
The Witcher 3: Wild Hunt 3−4
+0%
3−4
+0%

4K
Ultra Preset

Assassin's Creed Odyssey 4−5
+0%
4−5
+0%
Assassin's Creed Valhalla 3−4
+0%
3−4
+0%
Call of Duty: Modern Warfare 3−4
+0%
3−4
+0%
Cyberpunk 2077 0−1 0−1
Far Cry 5 3−4
+0%
3−4
+0%
Forza Horizon 4 6−7
+0%
6−7
+0%
Shadow of the Tomb Raider 1−2
+0%
1−2
+0%
Watch Dogs: Legion 2−3
+0%
2−3
+0%

4K
Epic Preset

Red Dead Redemption 2 7−8
+0%
7−8
+0%

This is how RTX 4000 and GeForce MX250 compete in popular games:

  • RTX 4000 is 536% faster in 1080p

All in all, in popular games:

  • there's a draw in 71 test (100%)

Pros & cons summary


Performance score 39.71 6.24
Recency 13 November 2018 20 February 2019
Maximum RAM amount 8 GB 2 GB
Chip lithography 12 nm 14 nm
Power consumption (TDP) 160 Watt 10 Watt

RTX 4000 has a 536.4% higher aggregate performance score, a 300% higher maximum VRAM amount, and a 16.7% more advanced lithography process.

GeForce MX250, on the other hand, has an age advantage of 3 months, and 1500% lower power consumption.

The Quadro RTX 4000 is our recommended choice as it beats the GeForce MX250 in performance tests.

Be aware that Quadro RTX 4000 is a workstation card while GeForce MX250 is a notebook one.


Should you still have questions concerning choice between the reviewed GPUs, ask them in Comments section, and we shall answer.

Vote for your favorite

Do you think we are right or mistaken in our choice? Vote by clicking "Like" button near your favorite graphics card.


NVIDIA Quadro RTX 4000
Quadro RTX 4000
NVIDIA GeForce MX250
GeForce MX250

Comparisons with similar GPUs

We selected several comparisons of graphics cards with performance close to those reviewed, providing you with more options to consider.

Community ratings

Here you can see the user ratings of the compared graphics cards, as well as rate them yourself.


3.5 492 votes

Rate Quadro RTX 4000 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5
3.6 1562 votes

Rate GeForce MX250 on a scale of 1 to 5:

  • 1
  • 2
  • 3
  • 4
  • 5

Questions & comments

Here you can ask a question about this comparison, agree or disagree with our judgements, or report an error or mismatch.